Shengming Huang , Guancheng Jiang , Quande Wang , Lixin Zhu , Jun Yang , Chunping Guo , Tengfei Dong , Yinbo He , Lili Yang
{"title":"用于清洁压裂液的粘弹性齐聚物表面活性剂的制备和性能评估","authors":"Shengming Huang , Guancheng Jiang , Quande Wang , Lixin Zhu , Jun Yang , Chunping Guo , Tengfei Dong , Yinbo He , Lili Yang","doi":"10.1016/j.molliq.2024.126495","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the limitations of traditional guar gum fracturing fluids, characterized by inadequate proppant carrying capacity and substantial reservoir damage, we have synthesized a zwitterionic surfactant EAPHS using ethyl acid (EA), N,N-dimethyl-1,3-propanediamine (DMAPA), and 3-chloro-2-hydroxypropyl sulfonic acid sodium salt. Through the optimization of the NaSal counterion salt ratio, we developed a viscoelastic surfactant (VES) clean fracturing fluid system, with the optimal formulation identified as 4.0 % EAPHS + 3.0 % NaSal. The research results indicate that the critical micelle concentration (CMC) of the EAPHS surfactant is 8.3 × 10<sup>−4</sup> mol/L, with the surface tension <span><math><msub><mi>γ</mi><mrow><mi>CMC</mi></mrow></msub></math></span> is 38.5 mN/m. The observation results from cryogenic transmission electron microscopy (Cryo-TEM) indicate the formation of worm-like micelles in the VES clean fracturing fluid system, facilitating viscosity enhancement and sand-carrying. The viscosity of the VES clean fracturing fluid system remains stable at 34 mPa·s after undergoing continuous shearing at 120 °C and 170 s<sup>−1</sup> for 60 min. Furthermore, this system exhibits favorable rheological properties and sand-carrying capabilities. The drag reduction efficiency of the VES clean fracturing fluid system exceeds 60 %, demonstrating excellent micelle-breaking performance. Moreover, the damage rate to the permeability of natural cores caused by the breaking fluid is only 7.34 %. This indicates the low-damage characteristics of the VES clean fracturing fluid system, effectively reducing secondary damage to reservoirs after fracturing. It provides valuable reference and guidance for the further application of VES clean fracturing fluid systems in oilfield operations.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"416 ","pages":"Article 126495"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and performance evaluation of viscoelastic zwitterionic surfactant for cleaning fracturing fluids\",\"authors\":\"Shengming Huang , Guancheng Jiang , Quande Wang , Lixin Zhu , Jun Yang , Chunping Guo , Tengfei Dong , Yinbo He , Lili Yang\",\"doi\":\"10.1016/j.molliq.2024.126495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the limitations of traditional guar gum fracturing fluids, characterized by inadequate proppant carrying capacity and substantial reservoir damage, we have synthesized a zwitterionic surfactant EAPHS using ethyl acid (EA), N,N-dimethyl-1,3-propanediamine (DMAPA), and 3-chloro-2-hydroxypropyl sulfonic acid sodium salt. Through the optimization of the NaSal counterion salt ratio, we developed a viscoelastic surfactant (VES) clean fracturing fluid system, with the optimal formulation identified as 4.0 % EAPHS + 3.0 % NaSal. The research results indicate that the critical micelle concentration (CMC) of the EAPHS surfactant is 8.3 × 10<sup>−4</sup> mol/L, with the surface tension <span><math><msub><mi>γ</mi><mrow><mi>CMC</mi></mrow></msub></math></span> is 38.5 mN/m. The observation results from cryogenic transmission electron microscopy (Cryo-TEM) indicate the formation of worm-like micelles in the VES clean fracturing fluid system, facilitating viscosity enhancement and sand-carrying. The viscosity of the VES clean fracturing fluid system remains stable at 34 mPa·s after undergoing continuous shearing at 120 °C and 170 s<sup>−1</sup> for 60 min. Furthermore, this system exhibits favorable rheological properties and sand-carrying capabilities. The drag reduction efficiency of the VES clean fracturing fluid system exceeds 60 %, demonstrating excellent micelle-breaking performance. Moreover, the damage rate to the permeability of natural cores caused by the breaking fluid is only 7.34 %. This indicates the low-damage characteristics of the VES clean fracturing fluid system, effectively reducing secondary damage to reservoirs after fracturing. It provides valuable reference and guidance for the further application of VES clean fracturing fluid systems in oilfield operations.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"416 \",\"pages\":\"Article 126495\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732224025546\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224025546","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation and performance evaluation of viscoelastic zwitterionic surfactant for cleaning fracturing fluids
In response to the limitations of traditional guar gum fracturing fluids, characterized by inadequate proppant carrying capacity and substantial reservoir damage, we have synthesized a zwitterionic surfactant EAPHS using ethyl acid (EA), N,N-dimethyl-1,3-propanediamine (DMAPA), and 3-chloro-2-hydroxypropyl sulfonic acid sodium salt. Through the optimization of the NaSal counterion salt ratio, we developed a viscoelastic surfactant (VES) clean fracturing fluid system, with the optimal formulation identified as 4.0 % EAPHS + 3.0 % NaSal. The research results indicate that the critical micelle concentration (CMC) of the EAPHS surfactant is 8.3 × 10−4 mol/L, with the surface tension is 38.5 mN/m. The observation results from cryogenic transmission electron microscopy (Cryo-TEM) indicate the formation of worm-like micelles in the VES clean fracturing fluid system, facilitating viscosity enhancement and sand-carrying. The viscosity of the VES clean fracturing fluid system remains stable at 34 mPa·s after undergoing continuous shearing at 120 °C and 170 s−1 for 60 min. Furthermore, this system exhibits favorable rheological properties and sand-carrying capabilities. The drag reduction efficiency of the VES clean fracturing fluid system exceeds 60 %, demonstrating excellent micelle-breaking performance. Moreover, the damage rate to the permeability of natural cores caused by the breaking fluid is only 7.34 %. This indicates the low-damage characteristics of the VES clean fracturing fluid system, effectively reducing secondary damage to reservoirs after fracturing. It provides valuable reference and guidance for the further application of VES clean fracturing fluid systems in oilfield operations.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.