{"title":"面向热大爆炸宇宙的参量放大超级辐射","authors":"Motohiko Yoshimura , Kunio Kaneta , Kin-ya Oda","doi":"10.1016/j.physletb.2024.139133","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a mechanism of preheating stage after inflation, using a new idea of parametrically amplified super-radiance. Highly coherent state, characterized by macro-coherence of scalar field coupled to produced massless particle in pairs, is created by parametric resonance effects associated with field oscillation around its potential minimum, within a Hubble volume. The state is described effectively by the simple Dicke-type of super-radiance model, and super-radiant pulse is emitted within a Hubble time, justifying neglect of cosmic expansion. Produced particles are shown to interact to change their energy and momentum distribution to realize thermal hot big bang universe. A long standing problem of heating after inflation may thus be solved. A new dark matter candidate produced at the emergence of thermalized universe is suggested as well.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"859 ","pages":"Article 139133"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametrically amplified super-radiance towards hot big bang universe\",\"authors\":\"Motohiko Yoshimura , Kunio Kaneta , Kin-ya Oda\",\"doi\":\"10.1016/j.physletb.2024.139133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a mechanism of preheating stage after inflation, using a new idea of parametrically amplified super-radiance. Highly coherent state, characterized by macro-coherence of scalar field coupled to produced massless particle in pairs, is created by parametric resonance effects associated with field oscillation around its potential minimum, within a Hubble volume. The state is described effectively by the simple Dicke-type of super-radiance model, and super-radiant pulse is emitted within a Hubble time, justifying neglect of cosmic expansion. Produced particles are shown to interact to change their energy and momentum distribution to realize thermal hot big bang universe. A long standing problem of heating after inflation may thus be solved. A new dark matter candidate produced at the emergence of thermalized universe is suggested as well.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"859 \",\"pages\":\"Article 139133\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269324006919\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324006919","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Parametrically amplified super-radiance towards hot big bang universe
We propose a mechanism of preheating stage after inflation, using a new idea of parametrically amplified super-radiance. Highly coherent state, characterized by macro-coherence of scalar field coupled to produced massless particle in pairs, is created by parametric resonance effects associated with field oscillation around its potential minimum, within a Hubble volume. The state is described effectively by the simple Dicke-type of super-radiance model, and super-radiant pulse is emitted within a Hubble time, justifying neglect of cosmic expansion. Produced particles are shown to interact to change their energy and momentum distribution to realize thermal hot big bang universe. A long standing problem of heating after inflation may thus be solved. A new dark matter candidate produced at the emergence of thermalized universe is suggested as well.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.