Yiying Huo , Pan Feng , Haoran Bi , Kai Wang , Yang Zhang , Yunming Fang , Meng Wang , Tianwei Tan
{"title":"乙酰-CoA 增效战略(SATS)用于改善酿酒酵母中的萜类化合物生物合成","authors":"Yiying Huo , Pan Feng , Haoran Bi , Kai Wang , Yang Zhang , Yunming Fang , Meng Wang , Tianwei Tan","doi":"10.1016/j.bej.2024.109572","DOIUrl":null,"url":null,"abstract":"<div><div>Terpenoids are widely applied in pharmaceuticals, fragrances and biofuels. Acetyl-CoA, as a crucial precursor in the mevalonate pathway, is stringently regulated intracellularly, thereby limiting the biosynthesis of terpenoids. This study develops a synergistic acetyl-CoA augmentation strategy (SATS) to establish a robust platform for terpenoid biosynthesis in <em>Saccharomyces cerevisiae</em>. Optimizing coenzyme A biosynthesis via global regulation of the pantothenic acid module improved intracellular acetyl-CoA levels by 3.26-fold. Enhancing acetyl phosphate supply was achieved by constructing a PPP-PK-PTA pathway, which improved intracellular acetyl-CoA by 1.92-fold. By combining these techniques, acetyl-CoA levels in the SATS-engineered strain increased by 6.03-fold. The titer of amorpha-4,11-diene, a representative terpenoid, rose by 37.77-fold to 188.45 mg/L in shake-flask fermentation and reached 13 g/L in a 5 L bioreactor. Furthermore, the modified strain exhibited enhanced production of other terpenoids. Our research indicates SATS is an effective approach for synthesizing terpenoids and other acetyl-CoA-derived compounds, demonstrating broad applicability.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109572"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic acetyl-CoA augmentation strategy (SATS) for improved terpenoid biosynthesis in Saccharomyces cerevisiae\",\"authors\":\"Yiying Huo , Pan Feng , Haoran Bi , Kai Wang , Yang Zhang , Yunming Fang , Meng Wang , Tianwei Tan\",\"doi\":\"10.1016/j.bej.2024.109572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Terpenoids are widely applied in pharmaceuticals, fragrances and biofuels. Acetyl-CoA, as a crucial precursor in the mevalonate pathway, is stringently regulated intracellularly, thereby limiting the biosynthesis of terpenoids. This study develops a synergistic acetyl-CoA augmentation strategy (SATS) to establish a robust platform for terpenoid biosynthesis in <em>Saccharomyces cerevisiae</em>. Optimizing coenzyme A biosynthesis via global regulation of the pantothenic acid module improved intracellular acetyl-CoA levels by 3.26-fold. Enhancing acetyl phosphate supply was achieved by constructing a PPP-PK-PTA pathway, which improved intracellular acetyl-CoA by 1.92-fold. By combining these techniques, acetyl-CoA levels in the SATS-engineered strain increased by 6.03-fold. The titer of amorpha-4,11-diene, a representative terpenoid, rose by 37.77-fold to 188.45 mg/L in shake-flask fermentation and reached 13 g/L in a 5 L bioreactor. Furthermore, the modified strain exhibited enhanced production of other terpenoids. Our research indicates SATS is an effective approach for synthesizing terpenoids and other acetyl-CoA-derived compounds, demonstrating broad applicability.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"213 \",\"pages\":\"Article 109572\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003590\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003590","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Synergistic acetyl-CoA augmentation strategy (SATS) for improved terpenoid biosynthesis in Saccharomyces cerevisiae
Terpenoids are widely applied in pharmaceuticals, fragrances and biofuels. Acetyl-CoA, as a crucial precursor in the mevalonate pathway, is stringently regulated intracellularly, thereby limiting the biosynthesis of terpenoids. This study develops a synergistic acetyl-CoA augmentation strategy (SATS) to establish a robust platform for terpenoid biosynthesis in Saccharomyces cerevisiae. Optimizing coenzyme A biosynthesis via global regulation of the pantothenic acid module improved intracellular acetyl-CoA levels by 3.26-fold. Enhancing acetyl phosphate supply was achieved by constructing a PPP-PK-PTA pathway, which improved intracellular acetyl-CoA by 1.92-fold. By combining these techniques, acetyl-CoA levels in the SATS-engineered strain increased by 6.03-fold. The titer of amorpha-4,11-diene, a representative terpenoid, rose by 37.77-fold to 188.45 mg/L in shake-flask fermentation and reached 13 g/L in a 5 L bioreactor. Furthermore, the modified strain exhibited enhanced production of other terpenoids. Our research indicates SATS is an effective approach for synthesizing terpenoids and other acetyl-CoA-derived compounds, demonstrating broad applicability.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.