Fawaz Al Hussein , Andreas Hartwig , Henning Großekappenberg
{"title":"羟基和叔胺在常压下催化环氧化物与二氧化碳的碳化反应中的协同效应","authors":"Fawaz Al Hussein , Andreas Hartwig , Henning Großekappenberg","doi":"10.1016/j.tgchem.2024.100057","DOIUrl":null,"url":null,"abstract":"<div><div>Fixation of carbon dioxide is a key issue for the sustainable synthesis of chemical compounds. A catalyst system for the preparation of cyclic carbonates by the fixation of carbon dioxide (CO<sub>2</sub>) onto epoxides is presented. This system is designed for easy application due to the availability of the compounds on an industrial scale as well as moderate reaction conditions. Notably, it avoids the use of metal-halogen catalysts and instead employs a tertiary amine as the catalytic center, in conjunction with an alcohol acting as a hydrogen bond donor (HBD). The kinetics of the cycloaddition reaction between epoxides and CO<sub>2</sub> were thoroughly investigated using IR spectroscopy. Remarkably, optimization of the amino-to-alcohol group ratio and the amine structure was carried out to enhance the overall performance of the catalyst system showing a synergistic effect between the tertiary amine and the hydroxyl. Most notably, this entire process is conducted without the use of solvents and operates at ambient pressure, underscoring its significant ecological advantages.</div></div>","PeriodicalId":101215,"journal":{"name":"Tetrahedron Green Chem","volume":"4 ","pages":"Article 100057"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of hydroxyl and tertiary amine in the catalytic carbonatization of epoxides with CO2 at atmospheric pressure\",\"authors\":\"Fawaz Al Hussein , Andreas Hartwig , Henning Großekappenberg\",\"doi\":\"10.1016/j.tgchem.2024.100057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fixation of carbon dioxide is a key issue for the sustainable synthesis of chemical compounds. A catalyst system for the preparation of cyclic carbonates by the fixation of carbon dioxide (CO<sub>2</sub>) onto epoxides is presented. This system is designed for easy application due to the availability of the compounds on an industrial scale as well as moderate reaction conditions. Notably, it avoids the use of metal-halogen catalysts and instead employs a tertiary amine as the catalytic center, in conjunction with an alcohol acting as a hydrogen bond donor (HBD). The kinetics of the cycloaddition reaction between epoxides and CO<sub>2</sub> were thoroughly investigated using IR spectroscopy. Remarkably, optimization of the amino-to-alcohol group ratio and the amine structure was carried out to enhance the overall performance of the catalyst system showing a synergistic effect between the tertiary amine and the hydroxyl. Most notably, this entire process is conducted without the use of solvents and operates at ambient pressure, underscoring its significant ecological advantages.</div></div>\",\"PeriodicalId\":101215,\"journal\":{\"name\":\"Tetrahedron Green Chem\",\"volume\":\"4 \",\"pages\":\"Article 100057\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron Green Chem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773223124000220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Green Chem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773223124000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
固定二氧化碳是可持续合成化合物的一个关键问题。本文介绍了一种通过将二氧化碳 (CO2) 固定在环氧化物上制备环状碳酸盐的催化剂系统。该系统的设计易于应用,因为可以在工业规模上获得化合物,而且反应条件适中。值得注意的是,它避免了使用金属卤素催化剂,而是采用叔胺作为催化中心,同时使用醇作为氢键供体(HBD)。利用红外光谱对环氧化物与 CO2 的环化反应动力学进行了深入研究。值得注意的是,通过优化氨基与酒精基团的比例以及胺的结构,提高了催化剂系统的整体性能,显示了叔胺与羟基之间的协同效应。最值得注意的是,整个过程无需使用溶剂,并在环境压力下运行,这突出了其显著的生态优势。
Synergistic effects of hydroxyl and tertiary amine in the catalytic carbonatization of epoxides with CO2 at atmospheric pressure
Fixation of carbon dioxide is a key issue for the sustainable synthesis of chemical compounds. A catalyst system for the preparation of cyclic carbonates by the fixation of carbon dioxide (CO2) onto epoxides is presented. This system is designed for easy application due to the availability of the compounds on an industrial scale as well as moderate reaction conditions. Notably, it avoids the use of metal-halogen catalysts and instead employs a tertiary amine as the catalytic center, in conjunction with an alcohol acting as a hydrogen bond donor (HBD). The kinetics of the cycloaddition reaction between epoxides and CO2 were thoroughly investigated using IR spectroscopy. Remarkably, optimization of the amino-to-alcohol group ratio and the amine structure was carried out to enhance the overall performance of the catalyst system showing a synergistic effect between the tertiary amine and the hydroxyl. Most notably, this entire process is conducted without the use of solvents and operates at ambient pressure, underscoring its significant ecological advantages.