{"title":"离心渣浆泵的水力性能和侵蚀磨损特性综述","authors":"Aoqiang Duan, Zhe Lin, Desheng Chen, Yi Li","doi":"10.1016/j.partic.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>The centrifugal slurry pump is widely applied for the transportation of liquid medium containing solid particles. The introduction of solid particles will lead to a decrease in efficiency and wear of the slurry pump. To solve this problem, it is imperative to review the hydraulic performance and erosion characteristic of slurry pumps under solid-liquid two-phase flow in recent years. In this review, firstly, the general structure and engineering application are introduced. Next, the experimental and simulation research methods of particle movement and erosion wear are explored. Then, the influence of solid particles on the hydraulic performance and particle distribution is analyzed. Afterwards, the variation laws of erosion wear under different flow-passing components and particle properties are clarified. Finally, according to the current research status and conclusions, the design optimization measures and future investigate direction are proposed, aiming to promote the resolution of wear damage and extend the service life of the slurry pump.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 370-392"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on the hydraulic performance and erosion wear characteristic of the centrifugal slurry pump\",\"authors\":\"Aoqiang Duan, Zhe Lin, Desheng Chen, Yi Li\",\"doi\":\"10.1016/j.partic.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The centrifugal slurry pump is widely applied for the transportation of liquid medium containing solid particles. The introduction of solid particles will lead to a decrease in efficiency and wear of the slurry pump. To solve this problem, it is imperative to review the hydraulic performance and erosion characteristic of slurry pumps under solid-liquid two-phase flow in recent years. In this review, firstly, the general structure and engineering application are introduced. Next, the experimental and simulation research methods of particle movement and erosion wear are explored. Then, the influence of solid particles on the hydraulic performance and particle distribution is analyzed. Afterwards, the variation laws of erosion wear under different flow-passing components and particle properties are clarified. Finally, according to the current research status and conclusions, the design optimization measures and future investigate direction are proposed, aiming to promote the resolution of wear damage and extend the service life of the slurry pump.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"95 \",\"pages\":\"Pages 370-392\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124002062\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002062","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A review on the hydraulic performance and erosion wear characteristic of the centrifugal slurry pump
The centrifugal slurry pump is widely applied for the transportation of liquid medium containing solid particles. The introduction of solid particles will lead to a decrease in efficiency and wear of the slurry pump. To solve this problem, it is imperative to review the hydraulic performance and erosion characteristic of slurry pumps under solid-liquid two-phase flow in recent years. In this review, firstly, the general structure and engineering application are introduced. Next, the experimental and simulation research methods of particle movement and erosion wear are explored. Then, the influence of solid particles on the hydraulic performance and particle distribution is analyzed. Afterwards, the variation laws of erosion wear under different flow-passing components and particle properties are clarified. Finally, according to the current research status and conclusions, the design optimization measures and future investigate direction are proposed, aiming to promote the resolution of wear damage and extend the service life of the slurry pump.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.