{"title":"双级联-三段耦合拓扑及其在介质波导谐振器双工器中的应用","authors":"Xin Xu, Wei Qin, Jian-Xin Chen","doi":"10.1016/j.aeue.2024.155573","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the twin cascaded-trisection (TCT) coupling topology, based on which a dielectric waveguide resonator (DWR) diplexer is designed. The TCT topology is constructed by two traditional trisection structures with one coupling route being shared. By properly setting the polarities of the couplings, it can generate two transmission zeros (TZs) on one side of the passband, either the low side or the high side. In order to facilitate the TCT topology, a four-pole DWR unit is constructed by flexibly utilizing four hexagonal DWRs. A diplexer with two frequency bands of 3.4 GHz−3.5 GHz (Channel 1) and 3.6 GHz−3.7 GHz (Channel 2) is designed by using two four-pole DWR units. A printed circuit board (PCB) is employed to realize the feeding and matching network for the two units. Two TZs are generated on the high side of the Channel 1 and two TZs are generated on the low side of Channel 2, making the filtering selectivity improved. The designed diplexer is fabricated and measured. For the two measured channels, the minimum insertion losses are 0.85 dB and 0.94 dB, and the isolations are better than 44 dB and 31 dB.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"188 ","pages":"Article 155573"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twin cascaded-trisection coupling topology and its application to dielectric waveguide resonator diplexer\",\"authors\":\"Xin Xu, Wei Qin, Jian-Xin Chen\",\"doi\":\"10.1016/j.aeue.2024.155573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the twin cascaded-trisection (TCT) coupling topology, based on which a dielectric waveguide resonator (DWR) diplexer is designed. The TCT topology is constructed by two traditional trisection structures with one coupling route being shared. By properly setting the polarities of the couplings, it can generate two transmission zeros (TZs) on one side of the passband, either the low side or the high side. In order to facilitate the TCT topology, a four-pole DWR unit is constructed by flexibly utilizing four hexagonal DWRs. A diplexer with two frequency bands of 3.4 GHz−3.5 GHz (Channel 1) and 3.6 GHz−3.7 GHz (Channel 2) is designed by using two four-pole DWR units. A printed circuit board (PCB) is employed to realize the feeding and matching network for the two units. Two TZs are generated on the high side of the Channel 1 and two TZs are generated on the low side of Channel 2, making the filtering selectivity improved. The designed diplexer is fabricated and measured. For the two measured channels, the minimum insertion losses are 0.85 dB and 0.94 dB, and the isolations are better than 44 dB and 31 dB.</div></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"188 \",\"pages\":\"Article 155573\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S143484112400459X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S143484112400459X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Twin cascaded-trisection coupling topology and its application to dielectric waveguide resonator diplexer
This article investigates the twin cascaded-trisection (TCT) coupling topology, based on which a dielectric waveguide resonator (DWR) diplexer is designed. The TCT topology is constructed by two traditional trisection structures with one coupling route being shared. By properly setting the polarities of the couplings, it can generate two transmission zeros (TZs) on one side of the passband, either the low side or the high side. In order to facilitate the TCT topology, a four-pole DWR unit is constructed by flexibly utilizing four hexagonal DWRs. A diplexer with two frequency bands of 3.4 GHz−3.5 GHz (Channel 1) and 3.6 GHz−3.7 GHz (Channel 2) is designed by using two four-pole DWR units. A printed circuit board (PCB) is employed to realize the feeding and matching network for the two units. Two TZs are generated on the high side of the Channel 1 and two TZs are generated on the low side of Channel 2, making the filtering selectivity improved. The designed diplexer is fabricated and measured. For the two measured channels, the minimum insertion losses are 0.85 dB and 0.94 dB, and the isolations are better than 44 dB and 31 dB.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.