Santiago Abelleira , Pedro L. Cruz , Diego Iribarren
{"title":"从有机废物中提取微生物油的生命周期可持续性评估","authors":"Santiago Abelleira , Pedro L. Cruz , Diego Iribarren","doi":"10.1016/j.cesys.2024.100236","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial oils (MOs) are lipids produced by oleaginous microorganisms, which constitute an alternative to vegetable and fossil-derived oils. They can be produced from organic waste by coupling acidogenic fermentation (AF) with oleaginous fermentation (OF). This study addresses a life cycle sustainability assessment (LCSA) of MO produced from the organic fraction of municipal solid waste. First, a system was modelled using simulation tools. This model combines AF for the production of volatile fatty acids from organic waste, OF for the production of lipid-rich yeasts, and MO extraction. LCSA results indicate the need for improvements in the disruption of yeasts and the overall efficiency of the system. Particularly, slightly acidified thermolysis turned out to involve excessively high steam requirements. An enhanced sustainability performance could be achieved by exploring alternative disruption methods or alternative sources of energy for the production of steam such as biogas from the valorisation of the sludges produced in the system.</div></div>","PeriodicalId":34616,"journal":{"name":"Cleaner Environmental Systems","volume":"15 ","pages":"Article 100236"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life cycle sustainability assessment of microbial oil from organic waste\",\"authors\":\"Santiago Abelleira , Pedro L. Cruz , Diego Iribarren\",\"doi\":\"10.1016/j.cesys.2024.100236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial oils (MOs) are lipids produced by oleaginous microorganisms, which constitute an alternative to vegetable and fossil-derived oils. They can be produced from organic waste by coupling acidogenic fermentation (AF) with oleaginous fermentation (OF). This study addresses a life cycle sustainability assessment (LCSA) of MO produced from the organic fraction of municipal solid waste. First, a system was modelled using simulation tools. This model combines AF for the production of volatile fatty acids from organic waste, OF for the production of lipid-rich yeasts, and MO extraction. LCSA results indicate the need for improvements in the disruption of yeasts and the overall efficiency of the system. Particularly, slightly acidified thermolysis turned out to involve excessively high steam requirements. An enhanced sustainability performance could be achieved by exploring alternative disruption methods or alternative sources of energy for the production of steam such as biogas from the valorisation of the sludges produced in the system.</div></div>\",\"PeriodicalId\":34616,\"journal\":{\"name\":\"Cleaner Environmental Systems\",\"volume\":\"15 \",\"pages\":\"Article 100236\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Environmental Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666789424000746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Environmental Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666789424000746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
微生物油(MOs)是由含油微生物产生的脂质,是植物油和化石油的替代品。微生物油可以通过产酸发酵(AF)和含油发酵(OF)相结合的方法从有机废物中生产出来。本研究针对从城市固体废弃物的有机部分生产出的 MO 进行了生命周期可持续性评估(LCSA)。首先,使用模拟工具对系统进行建模。该模型结合了从有机废物中生产挥发性脂肪酸的 AF、生产富含脂质的酵母的 OF 以及 MO 的提取。LCSA 的结果表明,需要改进酵母的破坏和系统的整体效率。特别是微酸化热解过程需要过多的蒸汽。通过探索其他破坏方法或生产蒸汽的替代能源,如利用系统产生的沼渣产生的沼气,可以提高可持续性性能。
Life cycle sustainability assessment of microbial oil from organic waste
Microbial oils (MOs) are lipids produced by oleaginous microorganisms, which constitute an alternative to vegetable and fossil-derived oils. They can be produced from organic waste by coupling acidogenic fermentation (AF) with oleaginous fermentation (OF). This study addresses a life cycle sustainability assessment (LCSA) of MO produced from the organic fraction of municipal solid waste. First, a system was modelled using simulation tools. This model combines AF for the production of volatile fatty acids from organic waste, OF for the production of lipid-rich yeasts, and MO extraction. LCSA results indicate the need for improvements in the disruption of yeasts and the overall efficiency of the system. Particularly, slightly acidified thermolysis turned out to involve excessively high steam requirements. An enhanced sustainability performance could be achieved by exploring alternative disruption methods or alternative sources of energy for the production of steam such as biogas from the valorisation of the sludges produced in the system.