{"title":"基于稀疏表示模型的 K-means 自适应 2DSSA 用于高光谱目标检测","authors":"Tianshu Zhou , Yi Cen , Jiani He , Yueming Wang","doi":"10.1016/j.infrared.2024.105616","DOIUrl":null,"url":null,"abstract":"<div><div>Target detection is a hot spot in hyperspectral imagery (HSI) processing. The detection accuracy of target detection algorithms based on sparse representation (SR) models usually suffers from the high reconstruction residuals caused by inaccurate background estimations and insufficient target samples. Besides, with the development of hyperspectral imaging technology, the spatial resolution of HSI has been continuously enhanced, which can provide more spatial information for target detection. However, spatial information is often overlooked, leading to the underutilization of the pluralistic features of HSI. Target detection using only spectral information is susceptible to spectral variation, resulting in a high false alarm rate. To alleviate these problems, this paper proposes a joint spatial-spectral algorithm. In terms of spectra, a dictionary construction strategy (DCS) is designed for the sparse representation-based binary hypothesis (SRBBH) detector to reduce reconstruction residuals of target and background samples. In terms of space, k-means 2D adaptive singular spectrum analysis (KSSA) is used to extract spatial features in cluster units. Using spatial features can enhance the robustness of the algorithm to spectral variation, thereby reducing false alarms. The target detection results are obtained by applying DCS-SRBBH to the KSSA feature image. We evaluate the proposed algorithm on three datasets: two public and one of our own. Comprehensive experimental results indicate that the proposed algorithm outperforms other target detection algorithms in terms of accuracy.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105616"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-means adaptive 2DSSA based on sparse representation model for hyperspectral target detection\",\"authors\":\"Tianshu Zhou , Yi Cen , Jiani He , Yueming Wang\",\"doi\":\"10.1016/j.infrared.2024.105616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Target detection is a hot spot in hyperspectral imagery (HSI) processing. The detection accuracy of target detection algorithms based on sparse representation (SR) models usually suffers from the high reconstruction residuals caused by inaccurate background estimations and insufficient target samples. Besides, with the development of hyperspectral imaging technology, the spatial resolution of HSI has been continuously enhanced, which can provide more spatial information for target detection. However, spatial information is often overlooked, leading to the underutilization of the pluralistic features of HSI. Target detection using only spectral information is susceptible to spectral variation, resulting in a high false alarm rate. To alleviate these problems, this paper proposes a joint spatial-spectral algorithm. In terms of spectra, a dictionary construction strategy (DCS) is designed for the sparse representation-based binary hypothesis (SRBBH) detector to reduce reconstruction residuals of target and background samples. In terms of space, k-means 2D adaptive singular spectrum analysis (KSSA) is used to extract spatial features in cluster units. Using spatial features can enhance the robustness of the algorithm to spectral variation, thereby reducing false alarms. The target detection results are obtained by applying DCS-SRBBH to the KSSA feature image. We evaluate the proposed algorithm on three datasets: two public and one of our own. Comprehensive experimental results indicate that the proposed algorithm outperforms other target detection algorithms in terms of accuracy.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"143 \",\"pages\":\"Article 105616\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524005000\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524005000","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
K-means adaptive 2DSSA based on sparse representation model for hyperspectral target detection
Target detection is a hot spot in hyperspectral imagery (HSI) processing. The detection accuracy of target detection algorithms based on sparse representation (SR) models usually suffers from the high reconstruction residuals caused by inaccurate background estimations and insufficient target samples. Besides, with the development of hyperspectral imaging technology, the spatial resolution of HSI has been continuously enhanced, which can provide more spatial information for target detection. However, spatial information is often overlooked, leading to the underutilization of the pluralistic features of HSI. Target detection using only spectral information is susceptible to spectral variation, resulting in a high false alarm rate. To alleviate these problems, this paper proposes a joint spatial-spectral algorithm. In terms of spectra, a dictionary construction strategy (DCS) is designed for the sparse representation-based binary hypothesis (SRBBH) detector to reduce reconstruction residuals of target and background samples. In terms of space, k-means 2D adaptive singular spectrum analysis (KSSA) is used to extract spatial features in cluster units. Using spatial features can enhance the robustness of the algorithm to spectral variation, thereby reducing false alarms. The target detection results are obtained by applying DCS-SRBBH to the KSSA feature image. We evaluate the proposed algorithm on three datasets: two public and one of our own. Comprehensive experimental results indicate that the proposed algorithm outperforms other target detection algorithms in terms of accuracy.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.