Yuhan Zhang , Jingjie Yu , Chenhuan Wu , Lehao Han , Yunru Tai , Boyan Wang , Yujing Yan , Yekai Liu , Yihan Sun , Qinqin Lu , Kai Zheng , Tian Zhou , Qiang Chen
{"title":"在钛上电泳沉积姜黄素负载介孔生物活性玻璃纳米粒子-壳聚糖复合涂层,用于治疗肿瘤诱导的骨缺损","authors":"Yuhan Zhang , Jingjie Yu , Chenhuan Wu , Lehao Han , Yunru Tai , Boyan Wang , Yujing Yan , Yekai Liu , Yihan Sun , Qinqin Lu , Kai Zheng , Tian Zhou , Qiang Chen","doi":"10.1016/j.compositesb.2024.111950","DOIUrl":null,"url":null,"abstract":"<div><div>Clinical treatment of osteosarcoma (OS) presents significant challenges in postoperative tumor recurrence and large segmental bone defects, often necessitating joint replacement or artificial bone implantation to repair failed or defective bone tissue. At the same time, fibroblastic encapsulation can impede direct contact between implants and bones, leading to implant failure. To tackle these issues, mesoporous bioactive glass nanoparticles (MBN) were synthesized and then loaded with curcumin (CUR). Subsequently, chitosan (CTS) was chosen as the charger and coating matrix, and electrophoretic deposition (EPD) was utilized to fabricate a CTS-MBN-CUR composite coating with triple functionality on Ti implants aiming for OS-induced bone repair. MBN-CUR nanoparticles are encapsulated in CTS and uniformly distributed within the coating, achieving robust adhesion and long-term release of CUR. Concurrently, the developed CTS-MBN-CUR coating exhibits moderate hydrophilicity, and good bioactivity. Moreover, three different types of cells, MC3T3-E1, L929, and MG63 cells, were individually cultured with the composite coating and subjected to comprehensive cellular studies. The coating presented favorable bioactivities, and osteogenic performance, and the ability to resist the activity of fibroblast and OS cells. These findings suggest that CTS-MBN-CUR holds promising potential for bone regeneration following OS resection surgery.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111950"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophoretic deposition of curcumin-loaded mesoporous bioactive glass nanoparticle-chitosan composite coatings on titanium for treating tumor-induced bone defect\",\"authors\":\"Yuhan Zhang , Jingjie Yu , Chenhuan Wu , Lehao Han , Yunru Tai , Boyan Wang , Yujing Yan , Yekai Liu , Yihan Sun , Qinqin Lu , Kai Zheng , Tian Zhou , Qiang Chen\",\"doi\":\"10.1016/j.compositesb.2024.111950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clinical treatment of osteosarcoma (OS) presents significant challenges in postoperative tumor recurrence and large segmental bone defects, often necessitating joint replacement or artificial bone implantation to repair failed or defective bone tissue. At the same time, fibroblastic encapsulation can impede direct contact between implants and bones, leading to implant failure. To tackle these issues, mesoporous bioactive glass nanoparticles (MBN) were synthesized and then loaded with curcumin (CUR). Subsequently, chitosan (CTS) was chosen as the charger and coating matrix, and electrophoretic deposition (EPD) was utilized to fabricate a CTS-MBN-CUR composite coating with triple functionality on Ti implants aiming for OS-induced bone repair. MBN-CUR nanoparticles are encapsulated in CTS and uniformly distributed within the coating, achieving robust adhesion and long-term release of CUR. Concurrently, the developed CTS-MBN-CUR coating exhibits moderate hydrophilicity, and good bioactivity. Moreover, three different types of cells, MC3T3-E1, L929, and MG63 cells, were individually cultured with the composite coating and subjected to comprehensive cellular studies. The coating presented favorable bioactivities, and osteogenic performance, and the ability to resist the activity of fibroblast and OS cells. These findings suggest that CTS-MBN-CUR holds promising potential for bone regeneration following OS resection surgery.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"289 \",\"pages\":\"Article 111950\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007625\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007625","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
骨肉瘤(OS)的临床治疗面临着肿瘤术后复发和大段骨缺损的巨大挑战,通常需要进行关节置换或人工骨植入来修复失败或缺损的骨组织。同时,成纤维细胞的包裹会阻碍植入物与骨骼的直接接触,导致植入物失效。为了解决这些问题,我们合成了介孔生物活性玻璃纳米颗粒(MBN),并在其中添加了姜黄素(CUR)。随后,选择壳聚糖(CTS)作为充填剂和涂层基质,并利用电泳沉积(EPD)技术在钛种植体上制造出具有三重功能的 CTS-MBN-CUR 复合涂层,用于 OS 诱导的骨修复。MBN-CUR 纳米粒子被包裹在 CTS 中,并均匀地分布在涂层中,从而实现了强大的附着力和 CUR 的长期释放。同时,所开发的 CTS-MBN-CUR 涂层具有适度的亲水性和良好的生物活性。此外,还用复合涂层分别培养了 MC3T3-E1、L929 和 MG63 三种不同类型的细胞,并进行了全面的细胞研究。结果表明,该涂层具有良好的生物活性、成骨性能以及抗成纤维细胞和 OS 细胞活性的能力。这些研究结果表明,CTS-MBN-CUR 在 OS 切除手术后的骨再生方面具有广阔的应用前景。
Electrophoretic deposition of curcumin-loaded mesoporous bioactive glass nanoparticle-chitosan composite coatings on titanium for treating tumor-induced bone defect
Clinical treatment of osteosarcoma (OS) presents significant challenges in postoperative tumor recurrence and large segmental bone defects, often necessitating joint replacement or artificial bone implantation to repair failed or defective bone tissue. At the same time, fibroblastic encapsulation can impede direct contact between implants and bones, leading to implant failure. To tackle these issues, mesoporous bioactive glass nanoparticles (MBN) were synthesized and then loaded with curcumin (CUR). Subsequently, chitosan (CTS) was chosen as the charger and coating matrix, and electrophoretic deposition (EPD) was utilized to fabricate a CTS-MBN-CUR composite coating with triple functionality on Ti implants aiming for OS-induced bone repair. MBN-CUR nanoparticles are encapsulated in CTS and uniformly distributed within the coating, achieving robust adhesion and long-term release of CUR. Concurrently, the developed CTS-MBN-CUR coating exhibits moderate hydrophilicity, and good bioactivity. Moreover, three different types of cells, MC3T3-E1, L929, and MG63 cells, were individually cultured with the composite coating and subjected to comprehensive cellular studies. The coating presented favorable bioactivities, and osteogenic performance, and the ability to resist the activity of fibroblast and OS cells. These findings suggest that CTS-MBN-CUR holds promising potential for bone regeneration following OS resection surgery.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.