界面缺陷对层状介质纳米级粘合接触的影响

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Applied Mathematical Modelling Pub Date : 2024-11-06 DOI:10.1016/j.apm.2024.115803
Xuefeng Tang , Wanyou Yang , Qiang Yang , Yuanyuan Liang
{"title":"界面缺陷对层状介质纳米级粘合接触的影响","authors":"Xuefeng Tang ,&nbsp;Wanyou Yang ,&nbsp;Qiang Yang ,&nbsp;Yuanyuan Liang","doi":"10.1016/j.apm.2024.115803","DOIUrl":null,"url":null,"abstract":"<div><div>Depending on processing technologies and working conditions, imperfect bonding at the layer-substrate interface may occur, resulting in diverse mechanical responses compared to a perfectly bonded layer-substrate system. This study focuses on an imperfect interface under force-like conditions and incorporates it into a nanoscale adhesive contact model to explore the influences of interfacial imperfection on the adhesive contact behaviors of the layered medium. The adhesive contact model is formulated based on the Lennard-Jones (LJ) potential and the Hammaker summation method. The adhesive contact problem is addressed by solving the nonlinear surface gap equations between the contact bodies. The deformation within the gap equations, accounting for the influence of imperfections, is computed using the fast Fourier transform (FFT) algorithm. This study explores the influence of three stress jumping coefficients <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which quantitatively characterize the interfacial imperfection, and their coeffects with material parameters, including imperfection depth (layer thickness), adhesion work, and elastic modulus, on the adhesive contact behaviors of the layered medium. The findings underscore that the normal stress jumping coefficient <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> exerts the most significant impact, wherein a higher <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> value corresponds to a smaller adhesive force and a larger absolute contact approach, while tangential stress jumping coefficients <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibit negligible influence. Decreasing <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> values correspond to varying interaction force-contact approach responses and contribute to alleviating contact stability in cases with large Tabor parameters. Interfacial imperfections manifest their influence by modifying the pressure-displacement response, with noticeable effects only within a specific imperfection depth range <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>&lt;</mo><mn>40</mn></math></span>. While the introduction of interfacial imperfections does not alter the fundamental impact of material parameters—such as imperfection depth, adhesion work ratios, and elastic modulus ratios—on adhesive force and contact approach, it does modify the magnitude of these effects. Furthermore, imperfections alter stress distribution, increasing maximal von Mises stress and causing stress concentration within the layer and at the interface. In summary, force-like imperfections reduce surface displacement, resulting in a smaller region of positive pressure and ultimately contributing to a larger adhesive force. However, this effect is accompanied by increased stress concentration at the imperfect interface. This heightened stress level poses a potential risk to the system's reliability.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"138 ","pages":"Article 115803"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of interfacial imperfections on nanoscale adhesive contact for layered medium\",\"authors\":\"Xuefeng Tang ,&nbsp;Wanyou Yang ,&nbsp;Qiang Yang ,&nbsp;Yuanyuan Liang\",\"doi\":\"10.1016/j.apm.2024.115803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Depending on processing technologies and working conditions, imperfect bonding at the layer-substrate interface may occur, resulting in diverse mechanical responses compared to a perfectly bonded layer-substrate system. This study focuses on an imperfect interface under force-like conditions and incorporates it into a nanoscale adhesive contact model to explore the influences of interfacial imperfection on the adhesive contact behaviors of the layered medium. The adhesive contact model is formulated based on the Lennard-Jones (LJ) potential and the Hammaker summation method. The adhesive contact problem is addressed by solving the nonlinear surface gap equations between the contact bodies. The deformation within the gap equations, accounting for the influence of imperfections, is computed using the fast Fourier transform (FFT) algorithm. This study explores the influence of three stress jumping coefficients <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which quantitatively characterize the interfacial imperfection, and their coeffects with material parameters, including imperfection depth (layer thickness), adhesion work, and elastic modulus, on the adhesive contact behaviors of the layered medium. The findings underscore that the normal stress jumping coefficient <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> exerts the most significant impact, wherein a higher <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> value corresponds to a smaller adhesive force and a larger absolute contact approach, while tangential stress jumping coefficients <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> exhibit negligible influence. Decreasing <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> values correspond to varying interaction force-contact approach responses and contribute to alleviating contact stability in cases with large Tabor parameters. Interfacial imperfections manifest their influence by modifying the pressure-displacement response, with noticeable effects only within a specific imperfection depth range <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>&lt;</mo><mn>40</mn></math></span>. While the introduction of interfacial imperfections does not alter the fundamental impact of material parameters—such as imperfection depth, adhesion work ratios, and elastic modulus ratios—on adhesive force and contact approach, it does modify the magnitude of these effects. Furthermore, imperfections alter stress distribution, increasing maximal von Mises stress and causing stress concentration within the layer and at the interface. In summary, force-like imperfections reduce surface displacement, resulting in a smaller region of positive pressure and ultimately contributing to a larger adhesive force. However, this effect is accompanied by increased stress concentration at the imperfect interface. This heightened stress level poses a potential risk to the system's reliability.</div></div>\",\"PeriodicalId\":50980,\"journal\":{\"name\":\"Applied Mathematical Modelling\",\"volume\":\"138 \",\"pages\":\"Article 115803\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0307904X24005560\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24005560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据加工技术和工作条件的不同,层-基底界面可能会出现不完全粘合,从而导致与完全粘合的层-基底系统相比产生不同的机械响应。本研究重点关注类力条件下的不完美界面,并将其纳入纳米级粘合接触模型,以探索界面不完美对分层介质粘合接触行为的影响。粘合接触模型是基于 Lennard-Jones (LJ) 势和 Hammaker 求和法建立的。粘着接触问题是通过求解接触体之间的非线性表面间隙方程来解决的。使用快速傅立叶变换 (FFT) 算法计算了间隙方程内的变形,并考虑了不完美的影响。本研究探讨了定量表征界面缺陷的三个应力跃迁系数 t1、t2 和 t3,以及它们与缺陷深度(层厚)、粘附功和弹性模量等材料参数对分层介质粘附接触行为的影响。研究结果表明,法向应力跃迁系数 t3 的影响最大,t3 值越大,粘附力越小,绝对接触角越大,而切向应力跃迁系数 t1 和 t2 的影响可以忽略不计。t3 值越小,相互作用力-接触角反应越大,在 Tabor 参数较大的情况下,有助于减轻接触稳定性。界面缺陷通过改变压力-位移响应来体现其影响,只有在特定的缺陷深度范围 h¯<40 内才有明显的影响。虽然界面缺陷的引入不会改变材料参数(如缺陷深度、附着功比和弹性模量比)对附着力和接触方式的基本影响,但会改变这些影响的程度。此外,缺陷还会改变应力分布,增加最大 von Mises 应力,并导致层内和界面处的应力集中。总之,类似于力的缺陷会减少表面位移,导致正压力区域变小,最终产生较大的粘附力。然而,在产生这种效果的同时,不完美界面处的应力集中也会增加。这种应力水平的提高对系统的可靠性构成了潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of interfacial imperfections on nanoscale adhesive contact for layered medium
Depending on processing technologies and working conditions, imperfect bonding at the layer-substrate interface may occur, resulting in diverse mechanical responses compared to a perfectly bonded layer-substrate system. This study focuses on an imperfect interface under force-like conditions and incorporates it into a nanoscale adhesive contact model to explore the influences of interfacial imperfection on the adhesive contact behaviors of the layered medium. The adhesive contact model is formulated based on the Lennard-Jones (LJ) potential and the Hammaker summation method. The adhesive contact problem is addressed by solving the nonlinear surface gap equations between the contact bodies. The deformation within the gap equations, accounting for the influence of imperfections, is computed using the fast Fourier transform (FFT) algorithm. This study explores the influence of three stress jumping coefficients t1, t2 and t3, which quantitatively characterize the interfacial imperfection, and their coeffects with material parameters, including imperfection depth (layer thickness), adhesion work, and elastic modulus, on the adhesive contact behaviors of the layered medium. The findings underscore that the normal stress jumping coefficient t3 exerts the most significant impact, wherein a higher t3 value corresponds to a smaller adhesive force and a larger absolute contact approach, while tangential stress jumping coefficients t1 and t2 exhibit negligible influence. Decreasing t3 values correspond to varying interaction force-contact approach responses and contribute to alleviating contact stability in cases with large Tabor parameters. Interfacial imperfections manifest their influence by modifying the pressure-displacement response, with noticeable effects only within a specific imperfection depth range h¯<40. While the introduction of interfacial imperfections does not alter the fundamental impact of material parameters—such as imperfection depth, adhesion work ratios, and elastic modulus ratios—on adhesive force and contact approach, it does modify the magnitude of these effects. Furthermore, imperfections alter stress distribution, increasing maximal von Mises stress and causing stress concentration within the layer and at the interface. In summary, force-like imperfections reduce surface displacement, resulting in a smaller region of positive pressure and ultimately contributing to a larger adhesive force. However, this effect is accompanied by increased stress concentration at the imperfect interface. This heightened stress level poses a potential risk to the system's reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
期刊最新文献
Variational integration approach for arbitrary Lagrangian-Eulerian formulation of flexible cables Bayesian uncertainty analysis for underwater 3D reconstruction with neural radiance fields Analytical assessment of suspension bridge's 3D curved cable configuration and cable clamp pre-installation angle considering the main cable torsional and flexural stiffnesses Analysis of short-range contact forces in peridynamics endowed with an improved nonlocal contact model Stochastic nonlinear model updating in structural dynamics using a novel likelihood function within the Bayesian-MCMC framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1