西北太平洋生态系统中 C:N 的化学计量和有机碳的归宿

IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Progress in Oceanography Pub Date : 2024-10-31 DOI:10.1016/j.pocean.2024.103372
Chuanli Zhang , Yaoyao Wang , Rong Bi , Ulrich Sommer , Guodong Song , Zhaohui Chen , Feng Lin , Jing Zhang , Meixun Zhao
{"title":"西北太平洋生态系统中 C:N 的化学计量和有机碳的归宿","authors":"Chuanli Zhang ,&nbsp;Yaoyao Wang ,&nbsp;Rong Bi ,&nbsp;Ulrich Sommer ,&nbsp;Guodong Song ,&nbsp;Zhaohui Chen ,&nbsp;Feng Lin ,&nbsp;Jing Zhang ,&nbsp;Meixun Zhao","doi":"10.1016/j.pocean.2024.103372","DOIUrl":null,"url":null,"abstract":"<div><div>Phytoplankton elemental composition regulates the efficiency of energy and material transfer in the interface between phytoplankton and their consumers. The ratio of particulate organic carbon to particulate organic nitrogen (POC:PON) shows considerable regional deviations from the canonical Redfield ratio in the global surface ocean. However, in certain oceanic regions such as the northwest Pacific Ocean (NWPO) POC:PON distribution and its ecological significance remain uncertain. We investigated surface ocean POC:PON distributions at 66 stations in the NWPO, and quantified the correlations between POC:PON and multiple biotic and abiotic factors including sea surface temperature (SST), nutrient concentrations and multiple lipid biomarkers (fatty acids and sterols), by combining correlation analyses and generalized additive models. POC:PON (range: 3.53–14.18 M ratios; median: 6.89) was overall higher in the (sub)tropical biome than that in the high-latitude biome. In the entire study region, SST, nutrient concentration and lipid-derived phytoplankton community structure explained 41 %, 33 % and 26 % of the variance in POC:PON, respectively, while the respective importance of each factor differed between the (sub)tropical and high-latitude biomes. Furthermore, we calculated the percentage of primary production consumed by herbivores (PPC; 54–156 %), showing a higher mean value (117 %) in the high-latitude biome and a lower one (92 %) in the (sub)tropical biome. The spatial distribution pattern of PPC can be attributed to multiple factors, with PPC correlating negatively with SST and positively with lipid-based indicators of phytoplankton food quality and POC concentrations. The increase in SST may be associated with a reduced nitrogen content, resulting in lower PPC in the (sub)tropical biome. This study highlights the significance of SST and elemental and biochemical composition of phytoplankton in regulating the transfer of organic carbon to herbivores in the NWPO.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"229 ","pages":"Article 103372"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C:N stoichiometry and the fate of organic carbon in ecosystems of the northwest Pacific Ocean\",\"authors\":\"Chuanli Zhang ,&nbsp;Yaoyao Wang ,&nbsp;Rong Bi ,&nbsp;Ulrich Sommer ,&nbsp;Guodong Song ,&nbsp;Zhaohui Chen ,&nbsp;Feng Lin ,&nbsp;Jing Zhang ,&nbsp;Meixun Zhao\",\"doi\":\"10.1016/j.pocean.2024.103372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phytoplankton elemental composition regulates the efficiency of energy and material transfer in the interface between phytoplankton and their consumers. The ratio of particulate organic carbon to particulate organic nitrogen (POC:PON) shows considerable regional deviations from the canonical Redfield ratio in the global surface ocean. However, in certain oceanic regions such as the northwest Pacific Ocean (NWPO) POC:PON distribution and its ecological significance remain uncertain. We investigated surface ocean POC:PON distributions at 66 stations in the NWPO, and quantified the correlations between POC:PON and multiple biotic and abiotic factors including sea surface temperature (SST), nutrient concentrations and multiple lipid biomarkers (fatty acids and sterols), by combining correlation analyses and generalized additive models. POC:PON (range: 3.53–14.18 M ratios; median: 6.89) was overall higher in the (sub)tropical biome than that in the high-latitude biome. In the entire study region, SST, nutrient concentration and lipid-derived phytoplankton community structure explained 41 %, 33 % and 26 % of the variance in POC:PON, respectively, while the respective importance of each factor differed between the (sub)tropical and high-latitude biomes. Furthermore, we calculated the percentage of primary production consumed by herbivores (PPC; 54–156 %), showing a higher mean value (117 %) in the high-latitude biome and a lower one (92 %) in the (sub)tropical biome. The spatial distribution pattern of PPC can be attributed to multiple factors, with PPC correlating negatively with SST and positively with lipid-based indicators of phytoplankton food quality and POC concentrations. The increase in SST may be associated with a reduced nitrogen content, resulting in lower PPC in the (sub)tropical biome. This study highlights the significance of SST and elemental and biochemical composition of phytoplankton in regulating the transfer of organic carbon to herbivores in the NWPO.</div></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"229 \",\"pages\":\"Article 103372\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124001782\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001782","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

浮游植物的元素组成调节着浮游植物与其消费者之间能量和物质传递的效率。在全球表层海洋中,颗粒有机碳与颗粒有机氮的比例(POC:PON)与典型的雷德菲尔德比例有相当大的区域性偏差。然而,在某些大洋区域,如西北太平洋(NWPO),POC:PON 的分布及其生态意义仍不确定。我们调查了西北太平洋 66 个站位的表层海洋 POC:PON 分布情况,并通过相关分析和广义相加模型,量化了 POC:PON 与多种生物和非生物因素(包括海表温度(SST)、营养物质浓度和多种脂质生物标志物(脂肪酸和固醇))之间的相关性。热带(亚)生物群落的 POC:PON(范围:3.53-14.18 M 比值;中位数:6.89)总体上高于高纬度生物群落。在整个研究区域,海温、营养浓度和脂质浮游植物群落结构分别解释了 POC:PON 变异的 41%、33% 和 26%,而(亚)热带生物群落和高纬度生物群落各因素的重要性有所不同。此外,我们还计算了食草动物消耗的初级生产力百分比(PPC;54-156%),结果显示高纬度生物群落的平均值较高(117%),而(亚)热带生物群落的平均值较低(92%)。PPC 的空间分布模式可归因于多种因素,PPC 与海温呈负相关,与浮游植物食物质量的脂质指标和 POC 浓度呈正相关。海温升高可能与氮含量降低有关,从而导致(亚)热带生物群落中的多氯联苯含量降低。这项研究强调了 SST 以及浮游植物的元素和生化组成在调节有机碳向西北太平洋海域食草动物转移过程中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C:N stoichiometry and the fate of organic carbon in ecosystems of the northwest Pacific Ocean
Phytoplankton elemental composition regulates the efficiency of energy and material transfer in the interface between phytoplankton and their consumers. The ratio of particulate organic carbon to particulate organic nitrogen (POC:PON) shows considerable regional deviations from the canonical Redfield ratio in the global surface ocean. However, in certain oceanic regions such as the northwest Pacific Ocean (NWPO) POC:PON distribution and its ecological significance remain uncertain. We investigated surface ocean POC:PON distributions at 66 stations in the NWPO, and quantified the correlations between POC:PON and multiple biotic and abiotic factors including sea surface temperature (SST), nutrient concentrations and multiple lipid biomarkers (fatty acids and sterols), by combining correlation analyses and generalized additive models. POC:PON (range: 3.53–14.18 M ratios; median: 6.89) was overall higher in the (sub)tropical biome than that in the high-latitude biome. In the entire study region, SST, nutrient concentration and lipid-derived phytoplankton community structure explained 41 %, 33 % and 26 % of the variance in POC:PON, respectively, while the respective importance of each factor differed between the (sub)tropical and high-latitude biomes. Furthermore, we calculated the percentage of primary production consumed by herbivores (PPC; 54–156 %), showing a higher mean value (117 %) in the high-latitude biome and a lower one (92 %) in the (sub)tropical biome. The spatial distribution pattern of PPC can be attributed to multiple factors, with PPC correlating negatively with SST and positively with lipid-based indicators of phytoplankton food quality and POC concentrations. The increase in SST may be associated with a reduced nitrogen content, resulting in lower PPC in the (sub)tropical biome. This study highlights the significance of SST and elemental and biochemical composition of phytoplankton in regulating the transfer of organic carbon to herbivores in the NWPO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Oceanography
Progress in Oceanography 地学-海洋学
CiteScore
7.20
自引率
4.90%
发文量
138
审稿时长
3 months
期刊介绍: Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.
期刊最新文献
Perspectives on Northern Gulf of Alaska salinity field structure, freshwater pathways, and controlling mechanisms Seasonal variations of the cold intermediate layer on the Newfoundland and Labrador Shelf Changes in prey-predator interactions in an Arctic food web under climate change Reduced phytoplankton biomass in a subtropical plume-upwelling system induced by typhoons Bailu and Podul C:N stoichiometry and the fate of organic carbon in ecosystems of the northwest Pacific Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1