Yanzhen Liang , Quanquan Han , Zhongyang Sui , Zhenhua Zhang , Han Zhang , Heng Gu , Defan Wu , Liqiao Wang , Hanlian Liu , Rossitza Setchi
{"title":"激光粉末床熔化高强度无裂纹 Al7075 合金,原位形成 TiB2/Al3Ti- 增强相和成核剂","authors":"Yanzhen Liang , Quanquan Han , Zhongyang Sui , Zhenhua Zhang , Han Zhang , Heng Gu , Defan Wu , Liqiao Wang , Hanlian Liu , Rossitza Setchi","doi":"10.1016/j.compositesb.2024.111940","DOIUrl":null,"url":null,"abstract":"<div><div>The existence of solidification cracks caused by columnar grains in precipitation-hardened aluminium alloys limit the applicability of Al7075 components manufactured via laser powder bed fusion (LPBF) additive manufacturing. A novel approach was developed to co-incorporate submicron-sized B and micron-grade Ti6Al4V to eliminate hot cracks and to effectively transform coarse columnar grains into fine equiaxed grains, thus improving the mechanical performance of LPBF-fabricated modified Al7075 material. The grain refinement was mainly attributable to the heterogeneous nucleation promoted by the combination of in-situ-formed L1<sub>2</sub>-Al<sub>3</sub>Ti and TiB<sub>2</sub> nano-sized phases. After an optimised T6 heat treatment, excellent comprehensive mechanical properties were achieved, with a tensile strength of 460 MPa and an elongation of 13 %. This research provides an efficient and cost-effective path for addressing crack-sensitive metallic materials used for LPBF additive manufacturing processes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111940"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser powder bed fusion of high-strength crack-free Al7075 alloy with the in-situ formation of TiB2/Al3Ti-reinforced phases and nucleation agents\",\"authors\":\"Yanzhen Liang , Quanquan Han , Zhongyang Sui , Zhenhua Zhang , Han Zhang , Heng Gu , Defan Wu , Liqiao Wang , Hanlian Liu , Rossitza Setchi\",\"doi\":\"10.1016/j.compositesb.2024.111940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existence of solidification cracks caused by columnar grains in precipitation-hardened aluminium alloys limit the applicability of Al7075 components manufactured via laser powder bed fusion (LPBF) additive manufacturing. A novel approach was developed to co-incorporate submicron-sized B and micron-grade Ti6Al4V to eliminate hot cracks and to effectively transform coarse columnar grains into fine equiaxed grains, thus improving the mechanical performance of LPBF-fabricated modified Al7075 material. The grain refinement was mainly attributable to the heterogeneous nucleation promoted by the combination of in-situ-formed L1<sub>2</sub>-Al<sub>3</sub>Ti and TiB<sub>2</sub> nano-sized phases. After an optimised T6 heat treatment, excellent comprehensive mechanical properties were achieved, with a tensile strength of 460 MPa and an elongation of 13 %. This research provides an efficient and cost-effective path for addressing crack-sensitive metallic materials used for LPBF additive manufacturing processes.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"289 \",\"pages\":\"Article 111940\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007522\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007522","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Laser powder bed fusion of high-strength crack-free Al7075 alloy with the in-situ formation of TiB2/Al3Ti-reinforced phases and nucleation agents
The existence of solidification cracks caused by columnar grains in precipitation-hardened aluminium alloys limit the applicability of Al7075 components manufactured via laser powder bed fusion (LPBF) additive manufacturing. A novel approach was developed to co-incorporate submicron-sized B and micron-grade Ti6Al4V to eliminate hot cracks and to effectively transform coarse columnar grains into fine equiaxed grains, thus improving the mechanical performance of LPBF-fabricated modified Al7075 material. The grain refinement was mainly attributable to the heterogeneous nucleation promoted by the combination of in-situ-formed L12-Al3Ti and TiB2 nano-sized phases. After an optimised T6 heat treatment, excellent comprehensive mechanical properties were achieved, with a tensile strength of 460 MPa and an elongation of 13 %. This research provides an efficient and cost-effective path for addressing crack-sensitive metallic materials used for LPBF additive manufacturing processes.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.