{"title":"通过垂直 Bi2WO6 纳米片上的光催化二氧化碳转化形成 C2 和 C3 碳氢化合物","authors":"Chia-Ju Lee , Rajneesh Chaurasiya , Jen-Sue Chen , Jih-Jen Wu","doi":"10.1016/j.susmat.2024.e01171","DOIUrl":null,"url":null,"abstract":"<div><div>In contrast to conventional nanostructured photocatalysts that only catalyze the conversion of CO<sub>2</sub> into C1 compounds of CO and CH<sub>3</sub>OH, in this study, the Bi<sub>2</sub>WO<sub>6</sub> nanosheets are deliberately grown to form a unique vertical configuration for achieving superior photocatalytic CO<sub>2</sub> conversion in the production of additional C2/C3 hydrocarbons, such as HCOOCH<sub>3</sub>, CH<sub>3</sub>CHO, and CH<sub>3</sub>COCH<sub>3</sub>. These products can serve as high-caloric-value fuels and chemical feedstocks, contributing to sustainability by potentially replacing fossil fuels. The vertical Bi<sub>2</sub>WO<sub>6</sub> nanosheets predominantly expose (010) crystal planes to the CO<sub>2</sub> atmosphere. By modifying the nanosheet to display a jagged porous feature that exposes a higher proportion of edge surfaces perpendicular to the main exposure faces, the resulting vertical porous Bi<sub>2</sub>WO<sub>6</sub> nanosheets catalyze the formation of additional hydrocarbons, including CH<sub>4</sub> and CH<sub>3</sub>CH<sub>2</sub>CHO. This enhancement further strengthens the sustainability merit of this photocatalytic process. To support these experimental findings, density functional theory calculations verify the enhanced photocatalytic activity of a characteristic edge face, the Bi<sub>2</sub>WO<sub>6</sub> (100) plane, compared to the Bi<sub>2</sub>WO<sub>6</sub> (010) plane in the conversion of CO<sub>2</sub> and H<sub>2</sub>O into hydrocarbons requiring multielectron transfer. This study highlights the effectiveness of the vertical Bi<sub>2</sub>WO<sub>6</sub> nanosheets, primarily featuring exposed (010) crystal planes along with additional exposed edge faces, in promoting sustainable CO<sub>2</sub> conversion reactions for the production of C2/C3 hydrocarbons involving multielectron transfer processes.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01171"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of C2 and C3 hydrocarbons through photocatalytic CO2 conversion on vertical Bi2WO6 nanosheets\",\"authors\":\"Chia-Ju Lee , Rajneesh Chaurasiya , Jen-Sue Chen , Jih-Jen Wu\",\"doi\":\"10.1016/j.susmat.2024.e01171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In contrast to conventional nanostructured photocatalysts that only catalyze the conversion of CO<sub>2</sub> into C1 compounds of CO and CH<sub>3</sub>OH, in this study, the Bi<sub>2</sub>WO<sub>6</sub> nanosheets are deliberately grown to form a unique vertical configuration for achieving superior photocatalytic CO<sub>2</sub> conversion in the production of additional C2/C3 hydrocarbons, such as HCOOCH<sub>3</sub>, CH<sub>3</sub>CHO, and CH<sub>3</sub>COCH<sub>3</sub>. These products can serve as high-caloric-value fuels and chemical feedstocks, contributing to sustainability by potentially replacing fossil fuels. The vertical Bi<sub>2</sub>WO<sub>6</sub> nanosheets predominantly expose (010) crystal planes to the CO<sub>2</sub> atmosphere. By modifying the nanosheet to display a jagged porous feature that exposes a higher proportion of edge surfaces perpendicular to the main exposure faces, the resulting vertical porous Bi<sub>2</sub>WO<sub>6</sub> nanosheets catalyze the formation of additional hydrocarbons, including CH<sub>4</sub> and CH<sub>3</sub>CH<sub>2</sub>CHO. This enhancement further strengthens the sustainability merit of this photocatalytic process. To support these experimental findings, density functional theory calculations verify the enhanced photocatalytic activity of a characteristic edge face, the Bi<sub>2</sub>WO<sub>6</sub> (100) plane, compared to the Bi<sub>2</sub>WO<sub>6</sub> (010) plane in the conversion of CO<sub>2</sub> and H<sub>2</sub>O into hydrocarbons requiring multielectron transfer. This study highlights the effectiveness of the vertical Bi<sub>2</sub>WO<sub>6</sub> nanosheets, primarily featuring exposed (010) crystal planes along with additional exposed edge faces, in promoting sustainable CO<sub>2</sub> conversion reactions for the production of C2/C3 hydrocarbons involving multielectron transfer processes.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01171\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724003518\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003518","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
传统的纳米结构光催化剂只能催化 CO2 转化为 CO 和 CH3OH 的 C1 化合物,与此不同的是,在本研究中,Bi2WO6 纳米片经过特意生长,形成了独特的垂直结构,从而在生产额外的 C2/C3 碳氢化合物(如 HCOOCH3、CH3CHO 和 CH3COCH3)过程中实现了卓越的光催化 CO2 转化。这些产品可作为高热值燃料和化学原料,通过替代化石燃料为可持续发展做出贡献。垂直的 Bi2WO6 纳米片主要将 (010) 晶面暴露在二氧化碳环境中。通过对纳米片进行改性,使其呈现锯齿状多孔特征,从而暴露出更多垂直于主要暴露面的边缘表面,由此产生的垂直多孔 Bi2WO6 纳米片可催化形成更多碳氢化合物,包括 CH4 和 CH3CH2CHO。这种提高进一步加强了这种光催化过程的可持续性优势。为支持这些实验结果,密度泛函理论计算证实,在将 CO2 和 H2O 转化为需要多电子转移的碳氢化合物的过程中,与 Bi2WO6 (010) 面相比,Bi2WO6 (100) 面这一特征边缘面的光催化活性得到了增强。这项研究强调了垂直 Bi2WO6 纳米片在促进涉及多电子转移过程的 C2/C3 碳氢化合物生产的可持续 CO2 转化反应中的有效性,这种纳米片主要以暴露的 (010) 晶面和其他暴露的边缘面为特征。
Formation of C2 and C3 hydrocarbons through photocatalytic CO2 conversion on vertical Bi2WO6 nanosheets
In contrast to conventional nanostructured photocatalysts that only catalyze the conversion of CO2 into C1 compounds of CO and CH3OH, in this study, the Bi2WO6 nanosheets are deliberately grown to form a unique vertical configuration for achieving superior photocatalytic CO2 conversion in the production of additional C2/C3 hydrocarbons, such as HCOOCH3, CH3CHO, and CH3COCH3. These products can serve as high-caloric-value fuels and chemical feedstocks, contributing to sustainability by potentially replacing fossil fuels. The vertical Bi2WO6 nanosheets predominantly expose (010) crystal planes to the CO2 atmosphere. By modifying the nanosheet to display a jagged porous feature that exposes a higher proportion of edge surfaces perpendicular to the main exposure faces, the resulting vertical porous Bi2WO6 nanosheets catalyze the formation of additional hydrocarbons, including CH4 and CH3CH2CHO. This enhancement further strengthens the sustainability merit of this photocatalytic process. To support these experimental findings, density functional theory calculations verify the enhanced photocatalytic activity of a characteristic edge face, the Bi2WO6 (100) plane, compared to the Bi2WO6 (010) plane in the conversion of CO2 and H2O into hydrocarbons requiring multielectron transfer. This study highlights the effectiveness of the vertical Bi2WO6 nanosheets, primarily featuring exposed (010) crystal planes along with additional exposed edge faces, in promoting sustainable CO2 conversion reactions for the production of C2/C3 hydrocarbons involving multielectron transfer processes.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.