Chenhe Ge , Pengfei Li , Mingju Zhang , Meng Yang , Weizi Wan
{"title":"用于地铁挖掘工程预应力内支撑的螺栓紧固楔形活动接头承载能力的实验和数值研究","authors":"Chenhe Ge , Pengfei Li , Mingju Zhang , Meng Yang , Weizi Wan","doi":"10.1016/j.undsp.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><div>The present study develops a novel type of active joint node-bolt fasten wedge (BFW) active joints, aiming to investigate the load-bearing capacity of a BFW joint in a quantitative way and put forward precise formulas for its yield load and compression rigidity. To achieve this, indoor axial loading tests were conducted on two BFW joints, accompanied by a set of numerical simulations with the finite element approach implemented in ABAQUS. Parametric research was then conducted to assess the impact of various factors on the yield load and initial compression rigidity of BFW joints, leading to the derivation of precise calculation formulas for accurate prediction of these parameters. The key findings indicate that enhancing the bolt strength from 10.9 to 12.9 significantly improves mechanical performance. Under axial compression, the final bearing force, yield load, and initial compression rigidity increase by 0.86, 1.06, and 0.15 times, respectively. Numerical models accurately predict joint behavior under axial force, confirming their reliability. Parameter studies reveal that increasing web and eaves thickness, bolt strength, and diameter improves bearing capacity, while splint thickness has little effect. The fitting formulas introduced can precisely estimate yield load and rigidity, providing practical value for engineering applications.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 100-116"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of the load-bearing capacity of bolt-fastened wedge active joints for prestressed internal bracing in subway excavations\",\"authors\":\"Chenhe Ge , Pengfei Li , Mingju Zhang , Meng Yang , Weizi Wan\",\"doi\":\"10.1016/j.undsp.2024.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study develops a novel type of active joint node-bolt fasten wedge (BFW) active joints, aiming to investigate the load-bearing capacity of a BFW joint in a quantitative way and put forward precise formulas for its yield load and compression rigidity. To achieve this, indoor axial loading tests were conducted on two BFW joints, accompanied by a set of numerical simulations with the finite element approach implemented in ABAQUS. Parametric research was then conducted to assess the impact of various factors on the yield load and initial compression rigidity of BFW joints, leading to the derivation of precise calculation formulas for accurate prediction of these parameters. The key findings indicate that enhancing the bolt strength from 10.9 to 12.9 significantly improves mechanical performance. Under axial compression, the final bearing force, yield load, and initial compression rigidity increase by 0.86, 1.06, and 0.15 times, respectively. Numerical models accurately predict joint behavior under axial force, confirming their reliability. Parameter studies reveal that increasing web and eaves thickness, bolt strength, and diameter improves bearing capacity, while splint thickness has little effect. The fitting formulas introduced can precisely estimate yield load and rigidity, providing practical value for engineering applications.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"21 \",\"pages\":\"Pages 100-116\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424001016\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001016","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental and numerical investigation of the load-bearing capacity of bolt-fastened wedge active joints for prestressed internal bracing in subway excavations
The present study develops a novel type of active joint node-bolt fasten wedge (BFW) active joints, aiming to investigate the load-bearing capacity of a BFW joint in a quantitative way and put forward precise formulas for its yield load and compression rigidity. To achieve this, indoor axial loading tests were conducted on two BFW joints, accompanied by a set of numerical simulations with the finite element approach implemented in ABAQUS. Parametric research was then conducted to assess the impact of various factors on the yield load and initial compression rigidity of BFW joints, leading to the derivation of precise calculation formulas for accurate prediction of these parameters. The key findings indicate that enhancing the bolt strength from 10.9 to 12.9 significantly improves mechanical performance. Under axial compression, the final bearing force, yield load, and initial compression rigidity increase by 0.86, 1.06, and 0.15 times, respectively. Numerical models accurately predict joint behavior under axial force, confirming their reliability. Parameter studies reveal that increasing web and eaves thickness, bolt strength, and diameter improves bearing capacity, while splint thickness has little effect. The fitting formulas introduced can precisely estimate yield load and rigidity, providing practical value for engineering applications.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.