{"title":"后向受激布里渊散射诱导的光机械纠缠","authors":"P. Djorwé , A.-H. Abdel-Aty , K.S. Nisar , S.G.N. Engo","doi":"10.1016/j.ijleo.2024.172097","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a scheme to generate robust optomechanical entanglement, i.e., the entanglement between a mechanical and an optical modes. This scheme is based on a Backward Stimulated Brillouin Scattering (BSBS) process, which is hosted within an optomechanical structure. Our benchmark system consists of an acoustic (mechanical) mode coupled to two optical modes through an electrostrictive (radiation pressure) effect. After determining the optimal acoustic parameters allowing the entanglement in our system, we have shown that both the acoustic coupling and the decay rate require a certain threshold from where the optomechanical entanglement is generated. For instance, to generate an optomechanical entanglement in our proposal, the strength of the used acoustic decay rate most exceed both the mechanical and optical decay rates, which is the figure of merit of our proposal. The generated entanglement is robust enough against thermal fluctuation. Our work provides a new scheme for entanglement generation based on BSBS effect, and can be extended to microwaves and hybrid optomechanical structures. Such a generated entangled states can be used for quantum information processing, quantum sensing, and quantum computing.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"319 ","pages":"Article 172097"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optomechanical entanglement induced by backward stimulated Brillouin scattering\",\"authors\":\"P. Djorwé , A.-H. Abdel-Aty , K.S. Nisar , S.G.N. Engo\",\"doi\":\"10.1016/j.ijleo.2024.172097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a scheme to generate robust optomechanical entanglement, i.e., the entanglement between a mechanical and an optical modes. This scheme is based on a Backward Stimulated Brillouin Scattering (BSBS) process, which is hosted within an optomechanical structure. Our benchmark system consists of an acoustic (mechanical) mode coupled to two optical modes through an electrostrictive (radiation pressure) effect. After determining the optimal acoustic parameters allowing the entanglement in our system, we have shown that both the acoustic coupling and the decay rate require a certain threshold from where the optomechanical entanglement is generated. For instance, to generate an optomechanical entanglement in our proposal, the strength of the used acoustic decay rate most exceed both the mechanical and optical decay rates, which is the figure of merit of our proposal. The generated entanglement is robust enough against thermal fluctuation. Our work provides a new scheme for entanglement generation based on BSBS effect, and can be extended to microwaves and hybrid optomechanical structures. Such a generated entangled states can be used for quantum information processing, quantum sensing, and quantum computing.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"319 \",\"pages\":\"Article 172097\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004960\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004960","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Optomechanical entanglement induced by backward stimulated Brillouin scattering
We propose a scheme to generate robust optomechanical entanglement, i.e., the entanglement between a mechanical and an optical modes. This scheme is based on a Backward Stimulated Brillouin Scattering (BSBS) process, which is hosted within an optomechanical structure. Our benchmark system consists of an acoustic (mechanical) mode coupled to two optical modes through an electrostrictive (radiation pressure) effect. After determining the optimal acoustic parameters allowing the entanglement in our system, we have shown that both the acoustic coupling and the decay rate require a certain threshold from where the optomechanical entanglement is generated. For instance, to generate an optomechanical entanglement in our proposal, the strength of the used acoustic decay rate most exceed both the mechanical and optical decay rates, which is the figure of merit of our proposal. The generated entanglement is robust enough against thermal fluctuation. Our work provides a new scheme for entanglement generation based on BSBS effect, and can be extended to microwaves and hybrid optomechanical structures. Such a generated entangled states can be used for quantum information processing, quantum sensing, and quantum computing.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.