Khadija Mawra , Khuram Rashid , Fahad K. Alqahtani , Idrees Zafar , Jae-Gwon Jeong , Minkwan Ju
{"title":"将 BIM 与模块化楼板施工决策相结合,对传统现浇楼板施工进行可持续性评估","authors":"Khadija Mawra , Khuram Rashid , Fahad K. Alqahtani , Idrees Zafar , Jae-Gwon Jeong , Minkwan Ju","doi":"10.1016/j.jestch.2024.101891","DOIUrl":null,"url":null,"abstract":"<div><div>Modular construction is an emerging technique being adopted with varying levels of modularization. Assessing its sustainability performance during the planning phase is essential for deciding between precast elements and traditional cast-in-situ methods. To address this, this study developed a comprehensive sustainability assessment framework that integrates economic, environmental, and social indicators. A total of 26 indicators were extracted from the literature and prioritized by 55 experts. Thus, ten indicators were designated critical and quantified for the case of a three-story building using three slab alternatives: cast-in-situ (CIS), I-girder (PIS), and hollow core (PHS). BIM analyses and qualitative data for the ten sustainability criteria were configured into a decision matrix through a multicriteria decision-making approach, i.e., TOPSIS. Simulations were conducted on the matrix by varying the weights of sustainability domains (0.33 – 0.80) to prioritize the best alternative. The BIM analyses revealed significant advantages of PIS, including a 33% and 31% reduction in material and labor costs, respectively, compared to the CIS. Furthermore, precast elements show a 60% reduction in carbon emissions, a 95% decrease in wastage, and an additional benefit of 90% less air pollution. The TOPSIS simulations concluded the PIS system as the most sustainable alternative with the highest relative closeness coefficients (RCC) in all domains and weight cases. The PIS performed best in the environmental with RCCs of 0.83 – 0.97, then in the economic with 0.83 – 0.86, and with 0.69 – 0.83 in the social domain.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"60 ","pages":"Article 101891"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainability assessment integrating BIM and decision-making for modular slab construction against conventional cast-in-situ\",\"authors\":\"Khadija Mawra , Khuram Rashid , Fahad K. Alqahtani , Idrees Zafar , Jae-Gwon Jeong , Minkwan Ju\",\"doi\":\"10.1016/j.jestch.2024.101891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modular construction is an emerging technique being adopted with varying levels of modularization. Assessing its sustainability performance during the planning phase is essential for deciding between precast elements and traditional cast-in-situ methods. To address this, this study developed a comprehensive sustainability assessment framework that integrates economic, environmental, and social indicators. A total of 26 indicators were extracted from the literature and prioritized by 55 experts. Thus, ten indicators were designated critical and quantified for the case of a three-story building using three slab alternatives: cast-in-situ (CIS), I-girder (PIS), and hollow core (PHS). BIM analyses and qualitative data for the ten sustainability criteria were configured into a decision matrix through a multicriteria decision-making approach, i.e., TOPSIS. Simulations were conducted on the matrix by varying the weights of sustainability domains (0.33 – 0.80) to prioritize the best alternative. The BIM analyses revealed significant advantages of PIS, including a 33% and 31% reduction in material and labor costs, respectively, compared to the CIS. Furthermore, precast elements show a 60% reduction in carbon emissions, a 95% decrease in wastage, and an additional benefit of 90% less air pollution. The TOPSIS simulations concluded the PIS system as the most sustainable alternative with the highest relative closeness coefficients (RCC) in all domains and weight cases. The PIS performed best in the environmental with RCCs of 0.83 – 0.97, then in the economic with 0.83 – 0.86, and with 0.69 – 0.83 in the social domain.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"60 \",\"pages\":\"Article 101891\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098624002775\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624002775","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Sustainability assessment integrating BIM and decision-making for modular slab construction against conventional cast-in-situ
Modular construction is an emerging technique being adopted with varying levels of modularization. Assessing its sustainability performance during the planning phase is essential for deciding between precast elements and traditional cast-in-situ methods. To address this, this study developed a comprehensive sustainability assessment framework that integrates economic, environmental, and social indicators. A total of 26 indicators were extracted from the literature and prioritized by 55 experts. Thus, ten indicators were designated critical and quantified for the case of a three-story building using three slab alternatives: cast-in-situ (CIS), I-girder (PIS), and hollow core (PHS). BIM analyses and qualitative data for the ten sustainability criteria were configured into a decision matrix through a multicriteria decision-making approach, i.e., TOPSIS. Simulations were conducted on the matrix by varying the weights of sustainability domains (0.33 – 0.80) to prioritize the best alternative. The BIM analyses revealed significant advantages of PIS, including a 33% and 31% reduction in material and labor costs, respectively, compared to the CIS. Furthermore, precast elements show a 60% reduction in carbon emissions, a 95% decrease in wastage, and an additional benefit of 90% less air pollution. The TOPSIS simulations concluded the PIS system as the most sustainable alternative with the highest relative closeness coefficients (RCC) in all domains and weight cases. The PIS performed best in the environmental with RCCs of 0.83 – 0.97, then in the economic with 0.83 – 0.86, and with 0.69 – 0.83 in the social domain.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)