Chunlai Liu, Wei Wang, Na Wang, Zelong Liu, Peihang Shen, Jianglei Hu, Fengwei Shi
{"title":"一锅法合成羧酸功能化立方介孔二氧化硅 SBA16,用于高效去除含 Cu2+ 的废水:吸附等温线、动力学和热力学","authors":"Chunlai Liu, Wei Wang, Na Wang, Zelong Liu, Peihang Shen, Jianglei Hu, Fengwei Shi","doi":"10.1016/j.micromeso.2024.113402","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater containing heavy metal ions, such as Cu<sup>2+</sup>, that are released into the environment will cause irreparable damage to the nature and human health of living. It is, therefore, absolutely crucial to remove these toxic ions from water. Herein, this paper utilizes the cyano group as a functional reagent to prepare carboxyl-functionalized SBA16 for adsorbing Cu<sup>2+</sup> in water. In this paper, 2-cyanoethyltriethoxysilane is employed as a functionalizing reagent to prepare carboxyl-functionalized SBA16 through a one-pot method. The prepared material was characterized using various techniques, such as WXRD, TEM, FT-IR, and XPS. The results indicated that the introduction of the functionalizing reagent did not disrupt the original cage-like cubic mesoporous structure (Im3m symmetry) of SBA16. Crucial adsorption factors, namely pH, adsorbent dosage, Cu<sup>2+</sup> initial concentration, and contact time, affecting the removal of Cu<sup>2+</sup> were monitored and the optimum adsorption conditions were determined. Isotherm and kinetic investigations were conducted and a non-linear fitting method of experimental data was used to obtain isotherm and kinetic parameters. Maximum adsorption capacity reaches 181.3 mg g<sup>−1</sup> was achieved in 60 min at pH = 3. Adsorption kinetics and adsorption isotherm followed the pseudo-second-order (R<sup>2</sup> = 0.999) and Langmuir (R<sup>2</sup> = 0.999) models, respectively. This suggests that the adsorption process primarily involves chemisorption and monolayer coverage. Thermodynamic parameters showed the spontaneous and endothermic nature of the adsorption process. After 5 cycles, the adsorbent still maintains a good adsorption capacity for Cu<sup>2+</sup>. This suggests promising applications for the adsorbent in treating wastewater containing Cu<sup>2+</sup>.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"382 ","pages":"Article 113402"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of cubic mesoporous silica SBA16 functionalized with carboxylic acid in a one-pot process for efficient removal of wastewater containing Cu2+: Adsorption isotherms, kinetics, and thermodynamics\",\"authors\":\"Chunlai Liu, Wei Wang, Na Wang, Zelong Liu, Peihang Shen, Jianglei Hu, Fengwei Shi\",\"doi\":\"10.1016/j.micromeso.2024.113402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wastewater containing heavy metal ions, such as Cu<sup>2+</sup>, that are released into the environment will cause irreparable damage to the nature and human health of living. It is, therefore, absolutely crucial to remove these toxic ions from water. Herein, this paper utilizes the cyano group as a functional reagent to prepare carboxyl-functionalized SBA16 for adsorbing Cu<sup>2+</sup> in water. In this paper, 2-cyanoethyltriethoxysilane is employed as a functionalizing reagent to prepare carboxyl-functionalized SBA16 through a one-pot method. The prepared material was characterized using various techniques, such as WXRD, TEM, FT-IR, and XPS. The results indicated that the introduction of the functionalizing reagent did not disrupt the original cage-like cubic mesoporous structure (Im3m symmetry) of SBA16. Crucial adsorption factors, namely pH, adsorbent dosage, Cu<sup>2+</sup> initial concentration, and contact time, affecting the removal of Cu<sup>2+</sup> were monitored and the optimum adsorption conditions were determined. Isotherm and kinetic investigations were conducted and a non-linear fitting method of experimental data was used to obtain isotherm and kinetic parameters. Maximum adsorption capacity reaches 181.3 mg g<sup>−1</sup> was achieved in 60 min at pH = 3. Adsorption kinetics and adsorption isotherm followed the pseudo-second-order (R<sup>2</sup> = 0.999) and Langmuir (R<sup>2</sup> = 0.999) models, respectively. This suggests that the adsorption process primarily involves chemisorption and monolayer coverage. Thermodynamic parameters showed the spontaneous and endothermic nature of the adsorption process. After 5 cycles, the adsorbent still maintains a good adsorption capacity for Cu<sup>2+</sup>. This suggests promising applications for the adsorbent in treating wastewater containing Cu<sup>2+</sup>.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"382 \",\"pages\":\"Article 113402\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124004244\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004244","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of cubic mesoporous silica SBA16 functionalized with carboxylic acid in a one-pot process for efficient removal of wastewater containing Cu2+: Adsorption isotherms, kinetics, and thermodynamics
Wastewater containing heavy metal ions, such as Cu2+, that are released into the environment will cause irreparable damage to the nature and human health of living. It is, therefore, absolutely crucial to remove these toxic ions from water. Herein, this paper utilizes the cyano group as a functional reagent to prepare carboxyl-functionalized SBA16 for adsorbing Cu2+ in water. In this paper, 2-cyanoethyltriethoxysilane is employed as a functionalizing reagent to prepare carboxyl-functionalized SBA16 through a one-pot method. The prepared material was characterized using various techniques, such as WXRD, TEM, FT-IR, and XPS. The results indicated that the introduction of the functionalizing reagent did not disrupt the original cage-like cubic mesoporous structure (Im3m symmetry) of SBA16. Crucial adsorption factors, namely pH, adsorbent dosage, Cu2+ initial concentration, and contact time, affecting the removal of Cu2+ were monitored and the optimum adsorption conditions were determined. Isotherm and kinetic investigations were conducted and a non-linear fitting method of experimental data was used to obtain isotherm and kinetic parameters. Maximum adsorption capacity reaches 181.3 mg g−1 was achieved in 60 min at pH = 3. Adsorption kinetics and adsorption isotherm followed the pseudo-second-order (R2 = 0.999) and Langmuir (R2 = 0.999) models, respectively. This suggests that the adsorption process primarily involves chemisorption and monolayer coverage. Thermodynamic parameters showed the spontaneous and endothermic nature of the adsorption process. After 5 cycles, the adsorbent still maintains a good adsorption capacity for Cu2+. This suggests promising applications for the adsorbent in treating wastewater containing Cu2+.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.