Catrin Stadelmann , Line Grottian , Marco Natkhin , Tanja GM Sanders
{"title":"利用长期监测数据提高风蚀风险模型 ForestGALES 的预测能力--一种统计校准方法","authors":"Catrin Stadelmann , Line Grottian , Marco Natkhin , Tanja GM Sanders","doi":"10.1016/j.foreco.2024.122389","DOIUrl":null,"url":null,"abstract":"<div><div>Winter storms cause severe damage in German forests. Different modelling approaches have already been used to try and map endangered areas to minimize the risk of wind damage by stand adaption. Prevalent models for Germany include empirical-statistical and hybrid-mechanistic models, such as ForestGALES (FG). As of yet, FG is not extensively used in Germany as its parametrization requires extensive experimental efforts to derive regionally sensitive species-specific parameters. Here, we implement a statistical calibration approach for German forest conditions with observed damage from single tree data, soil types, topography (topex) and gust speed data. We use simulated annealing to generate new species-specific values for the tree species, Norway spruce, European beech, and Douglas fir from within the range of all coniferous (deciduous) species for Norway spruce and Douglas fir (European beech) and an additional 10 % buffer around the default species-specific values for each species. We compare two optimization approaches: First, we aim to maximize the Matthew’s correlation coefficient (MCC), which is calculated from the confusion matrix, applying a fixed classification threshold of 0.5. In comparison to the optimization at a fixed threshold, we optimized the species-specific parameters by maximizing the area-under-curve (AUC) value directly generated from the receiver-operator characteristic (ROC) analysis. We compare our statistical parametrizations for the considered species to those currently implemented in FG and validate the resulting damage probabilities based on confusion matrices and related performance measures. We created separate parametrizations for a single-tree and stand-wide analysis of storm damage risk, which we validated with gust speed data for Germany. Our results show, that for the single-tree method, MCC improved for all species: By 0.26 (0.22) for the calibration (validation) subset for Douglas fir, by 0.22 (0.18) for Norway spruce and by 0.08 (0.05) for European beech. The optimization for the stand-method shows an increase in MCC as well, with results not being considered due to low numbers of observation data. We show that for German forests, FG’s predictive capability can be improved by statistical optimization when no tree-pulling data is available, which could be valuable for creating further regionalizations of FG.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"576 ","pages":"Article 122389"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the predictive capacity of the windthrow risk model ForestGALES with long-term monitoring data – A statistical calibration approach\",\"authors\":\"Catrin Stadelmann , Line Grottian , Marco Natkhin , Tanja GM Sanders\",\"doi\":\"10.1016/j.foreco.2024.122389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Winter storms cause severe damage in German forests. Different modelling approaches have already been used to try and map endangered areas to minimize the risk of wind damage by stand adaption. Prevalent models for Germany include empirical-statistical and hybrid-mechanistic models, such as ForestGALES (FG). As of yet, FG is not extensively used in Germany as its parametrization requires extensive experimental efforts to derive regionally sensitive species-specific parameters. Here, we implement a statistical calibration approach for German forest conditions with observed damage from single tree data, soil types, topography (topex) and gust speed data. We use simulated annealing to generate new species-specific values for the tree species, Norway spruce, European beech, and Douglas fir from within the range of all coniferous (deciduous) species for Norway spruce and Douglas fir (European beech) and an additional 10 % buffer around the default species-specific values for each species. We compare two optimization approaches: First, we aim to maximize the Matthew’s correlation coefficient (MCC), which is calculated from the confusion matrix, applying a fixed classification threshold of 0.5. In comparison to the optimization at a fixed threshold, we optimized the species-specific parameters by maximizing the area-under-curve (AUC) value directly generated from the receiver-operator characteristic (ROC) analysis. We compare our statistical parametrizations for the considered species to those currently implemented in FG and validate the resulting damage probabilities based on confusion matrices and related performance measures. We created separate parametrizations for a single-tree and stand-wide analysis of storm damage risk, which we validated with gust speed data for Germany. Our results show, that for the single-tree method, MCC improved for all species: By 0.26 (0.22) for the calibration (validation) subset for Douglas fir, by 0.22 (0.18) for Norway spruce and by 0.08 (0.05) for European beech. The optimization for the stand-method shows an increase in MCC as well, with results not being considered due to low numbers of observation data. We show that for German forests, FG’s predictive capability can be improved by statistical optimization when no tree-pulling data is available, which could be valuable for creating further regionalizations of FG.</div></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":\"576 \",\"pages\":\"Article 122389\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724007011\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724007011","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Improving the predictive capacity of the windthrow risk model ForestGALES with long-term monitoring data – A statistical calibration approach
Winter storms cause severe damage in German forests. Different modelling approaches have already been used to try and map endangered areas to minimize the risk of wind damage by stand adaption. Prevalent models for Germany include empirical-statistical and hybrid-mechanistic models, such as ForestGALES (FG). As of yet, FG is not extensively used in Germany as its parametrization requires extensive experimental efforts to derive regionally sensitive species-specific parameters. Here, we implement a statistical calibration approach for German forest conditions with observed damage from single tree data, soil types, topography (topex) and gust speed data. We use simulated annealing to generate new species-specific values for the tree species, Norway spruce, European beech, and Douglas fir from within the range of all coniferous (deciduous) species for Norway spruce and Douglas fir (European beech) and an additional 10 % buffer around the default species-specific values for each species. We compare two optimization approaches: First, we aim to maximize the Matthew’s correlation coefficient (MCC), which is calculated from the confusion matrix, applying a fixed classification threshold of 0.5. In comparison to the optimization at a fixed threshold, we optimized the species-specific parameters by maximizing the area-under-curve (AUC) value directly generated from the receiver-operator characteristic (ROC) analysis. We compare our statistical parametrizations for the considered species to those currently implemented in FG and validate the resulting damage probabilities based on confusion matrices and related performance measures. We created separate parametrizations for a single-tree and stand-wide analysis of storm damage risk, which we validated with gust speed data for Germany. Our results show, that for the single-tree method, MCC improved for all species: By 0.26 (0.22) for the calibration (validation) subset for Douglas fir, by 0.22 (0.18) for Norway spruce and by 0.08 (0.05) for European beech. The optimization for the stand-method shows an increase in MCC as well, with results not being considered due to low numbers of observation data. We show that for German forests, FG’s predictive capability can be improved by statistical optimization when no tree-pulling data is available, which could be valuable for creating further regionalizations of FG.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.