阐明掺氮碳基光催化剂中的氧进化和还原机制

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-09-10 DOI:10.1016/j.cclet.2024.110439
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang
{"title":"阐明掺氮碳基光催化剂中的氧进化和还原机制","authors":"Yan Wang ,&nbsp;Jiaqi Zhang ,&nbsp;Xiaofeng Wu ,&nbsp;Sibo Wang ,&nbsp;Masakazu Anpo ,&nbsp;Yuanxing Fang","doi":"10.1016/j.cclet.2024.110439","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-induced water oxidation reaction (WOR) for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages. WOR is also associated with important reduction reactions, such as oxygen reduction reaction (ORR), which leads to the production of hydrogen peroxide (H2O2). These transitions are instrumental in the emergence and evolution of life. In this study, transition metals were loaded onto nitrogen-doped carbon (NDC) prepared under the primitive Earth's atmospheric conditions. These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination. The chemical pathways initiated by the pristine and metal-loaded NDC were investigated. This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110439"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts\",\"authors\":\"Yan Wang ,&nbsp;Jiaqi Zhang ,&nbsp;Xiaofeng Wu ,&nbsp;Sibo Wang ,&nbsp;Masakazu Anpo ,&nbsp;Yuanxing Fang\",\"doi\":\"10.1016/j.cclet.2024.110439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar-induced water oxidation reaction (WOR) for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages. WOR is also associated with important reduction reactions, such as oxygen reduction reaction (ORR), which leads to the production of hydrogen peroxide (H2O2). These transitions are instrumental in the emergence and evolution of life. In this study, transition metals were loaded onto nitrogen-doped carbon (NDC) prepared under the primitive Earth's atmospheric conditions. These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination. The chemical pathways initiated by the pristine and metal-loaded NDC were investigated. This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 2\",\"pages\":\"Article 110439\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724009586\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724009586","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳诱导的氧进化水氧化反应(WOR)是地球大气在原始阶段从还原型向氧化型转变的关键步骤。水氧化反应还与重要的还原反应有关,如氧还原反应(ORR),它导致产生过氧化氢(H2O2)。这些转变对生命的出现和进化至关重要。在这项研究中,过渡金属被负载到在原始地球大气条件下制备的掺氮碳 (NDC) 上。研究发现,这些负载金属的 NDC 样品在光照下可催化 WOR 和 ORR。研究了原始 NDC 和金属负载 NDC 引发的化学途径。这项研究为了解与我们星球早期演化相关的潜在机制提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts
Solar-induced water oxidation reaction (WOR) for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages. WOR is also associated with important reduction reactions, such as oxygen reduction reaction (ORR), which leads to the production of hydrogen peroxide (H2O2). These transitions are instrumental in the emergence and evolution of life. In this study, transition metals were loaded onto nitrogen-doped carbon (NDC) prepared under the primitive Earth's atmospheric conditions. These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination. The chemical pathways initiated by the pristine and metal-loaded NDC were investigated. This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Corrigendum to “An overview of polymeric nanomicelles in clinical trials and on the market” [Chinese Chemical Letters 32 (2021) 243-257] Corrigendum to “Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis” [Chinese Chemical Letters 32 (2021) 1759-1764] Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1