利用可重复使用的生物启发纳米孔量化 Fe3+ 离子

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-09-07 DOI:10.1016/j.cclet.2024.110428
Yanqiong Wang , Yaqi Hou , Fengwei Huo , Xu Hou
{"title":"利用可重复使用的生物启发纳米孔量化 Fe3+ 离子","authors":"Yanqiong Wang ,&nbsp;Yaqi Hou ,&nbsp;Fengwei Huo ,&nbsp;Xu Hou","doi":"10.1016/j.cclet.2024.110428","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive Fe<sup>3+</sup> ion concentrations in wastewater pose a long-standing threat to human health. Achieving low-cost, high-efficiency quantification of Fe<sup>3+</sup> ion concentration in unknown solutions can guide environmental management decisions and optimize water treatment processes. In this study, by leveraging the rapid, real-time detection capabilities of nanopores and the specific chemical binding affinity of tannic acid to Fe<sup>3+</sup>, a linear relationship between the ion current and Fe<sup>3+</sup> ion concentration was established. Utilizing this linear relationship, quantification of Fe<sup>3+</sup> ion concentration in unknown solutions was achieved. Furthermore, ethylenediaminetetraacetic acid disodium salt was employed to displace Fe<sup>3+</sup> from the nanopores, allowing them to be restored to their initial conditions and reused for Fe<sup>3+</sup> ion quantification. The reusable bioinspired nanopores remain functional over 330 days of storage. This recycling capability and the long-term stability of the nanopores contribute to a significant reduction in costs. This study provides a strategy for the quantification of unknown Fe<sup>3+</sup> concentration using nanopores, with potential applications in environmental assessment, health monitoring, and so forth.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110428"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3+ ion quantification with reusable bioinspired nanopores\",\"authors\":\"Yanqiong Wang ,&nbsp;Yaqi Hou ,&nbsp;Fengwei Huo ,&nbsp;Xu Hou\",\"doi\":\"10.1016/j.cclet.2024.110428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Excessive Fe<sup>3+</sup> ion concentrations in wastewater pose a long-standing threat to human health. Achieving low-cost, high-efficiency quantification of Fe<sup>3+</sup> ion concentration in unknown solutions can guide environmental management decisions and optimize water treatment processes. In this study, by leveraging the rapid, real-time detection capabilities of nanopores and the specific chemical binding affinity of tannic acid to Fe<sup>3+</sup>, a linear relationship between the ion current and Fe<sup>3+</sup> ion concentration was established. Utilizing this linear relationship, quantification of Fe<sup>3+</sup> ion concentration in unknown solutions was achieved. Furthermore, ethylenediaminetetraacetic acid disodium salt was employed to displace Fe<sup>3+</sup> from the nanopores, allowing them to be restored to their initial conditions and reused for Fe<sup>3+</sup> ion quantification. The reusable bioinspired nanopores remain functional over 330 days of storage. This recycling capability and the long-term stability of the nanopores contribute to a significant reduction in costs. This study provides a strategy for the quantification of unknown Fe<sup>3+</sup> concentration using nanopores, with potential applications in environmental assessment, health monitoring, and so forth.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 2\",\"pages\":\"Article 110428\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724009471\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724009471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

废水中过量的 Fe3+ 离子浓度长期以来一直威胁着人类健康。对未知溶液中的 Fe3+ 离子浓度进行低成本、高效率的定量分析,可以为环境管理决策和优化水处理工艺提供指导。在本研究中,利用纳米孔的快速、实时检测能力以及单宁酸与 Fe3+ 的特异性化学结合亲和力,建立了离子电流与 Fe3+ 离子浓度之间的线性关系。利用这种线性关系,实现了对未知溶液中 Fe3+ 离子浓度的定量。此外,还利用乙二胺四乙酸二钠盐将 Fe3+ 从纳米孔中置换出来,使其恢复到初始状态并重新用于 Fe3+ 离子定量。可重复使用的生物启发纳米孔在储存 330 天后仍能保持功能。这种回收能力和纳米孔的长期稳定性大大降低了成本。这项研究提供了一种利用纳米孔量化未知 Fe3+ 浓度的策略,有望应用于环境评估、健康监测等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe3+ ion quantification with reusable bioinspired nanopores
Excessive Fe3+ ion concentrations in wastewater pose a long-standing threat to human health. Achieving low-cost, high-efficiency quantification of Fe3+ ion concentration in unknown solutions can guide environmental management decisions and optimize water treatment processes. In this study, by leveraging the rapid, real-time detection capabilities of nanopores and the specific chemical binding affinity of tannic acid to Fe3+, a linear relationship between the ion current and Fe3+ ion concentration was established. Utilizing this linear relationship, quantification of Fe3+ ion concentration in unknown solutions was achieved. Furthermore, ethylenediaminetetraacetic acid disodium salt was employed to displace Fe3+ from the nanopores, allowing them to be restored to their initial conditions and reused for Fe3+ ion quantification. The reusable bioinspired nanopores remain functional over 330 days of storage. This recycling capability and the long-term stability of the nanopores contribute to a significant reduction in costs. This study provides a strategy for the quantification of unknown Fe3+ concentration using nanopores, with potential applications in environmental assessment, health monitoring, and so forth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Corrigendum to “Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines” [Chinese Chemical Letters 33 (2022) 2736–2740] Corrigendum to “An overview of polymeric nanomicelles in clinical trials and on the market” [Chinese Chemical Letters 32 (2021) 243-257] Corrigendum to “Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis” [Chinese Chemical Letters 32 (2021) 1759-1764] Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1