点缺陷对立方砷化硼浅掺杂的影响:第一原理研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-11 DOI:10.1016/j.commatsci.2024.113483
Shuxiang Zhou , Zilong Hua , Kaustubh K. Bawane , Hao Zhou , Tianli Feng
{"title":"点缺陷对立方砷化硼浅掺杂的影响:第一原理研究","authors":"Shuxiang Zhou ,&nbsp;Zilong Hua ,&nbsp;Kaustubh K. Bawane ,&nbsp;Hao Zhou ,&nbsp;Tianli Feng","doi":"10.1016/j.commatsci.2024.113483","DOIUrl":null,"url":null,"abstract":"<div><div>Cubic boron arsenide (BAs) stands out as a promising material for advanced electronics, thanks to its exceptional thermal conductivity and ambipolar mobility. However, effective control of p- and n-type doping in BAs poses a significant challenge, mostly as a result of the influence of defects. In the present study, we employed density functional theory (DFT) to explore the impacts of the common point defects and impurities on p-type doping of Be<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, and on n-type doping of Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Se<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>. We found that the most favorable point defects formed by C, O, and Si are C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>, and O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, which have formation energies of less than <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. While the O impurity detrimentally affects both p- and n-type dopings, C and Si impurities are harmful for n-type dopings, making n-type doping a potential challenge. Interestingly, the antisite defect pair As<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>B<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span> benefits both p- and n-type doping. The doping limitation analysis presented in this study can potentially pave the way for strategic development in the area of BAs-based electronics.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113483"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of point defects on shallow doping in cubic boron arsenide: A first principles study\",\"authors\":\"Shuxiang Zhou ,&nbsp;Zilong Hua ,&nbsp;Kaustubh K. Bawane ,&nbsp;Hao Zhou ,&nbsp;Tianli Feng\",\"doi\":\"10.1016/j.commatsci.2024.113483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cubic boron arsenide (BAs) stands out as a promising material for advanced electronics, thanks to its exceptional thermal conductivity and ambipolar mobility. However, effective control of p- and n-type doping in BAs poses a significant challenge, mostly as a result of the influence of defects. In the present study, we employed density functional theory (DFT) to explore the impacts of the common point defects and impurities on p-type doping of Be<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, and on n-type doping of Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Se<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>. We found that the most favorable point defects formed by C, O, and Si are C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>, and O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, which have formation energies of less than <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. While the O impurity detrimentally affects both p- and n-type dopings, C and Si impurities are harmful for n-type dopings, making n-type doping a potential challenge. Interestingly, the antisite defect pair As<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>B<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span> benefits both p- and n-type doping. The doping limitation analysis presented in this study can potentially pave the way for strategic development in the area of BAs-based electronics.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113483\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007043\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

立方砷化硼(BAs)具有优异的热导率和极性迁移率,是一种很有前途的先进电子材料。然而,有效控制砷化硼中的 p 型和 n 型掺杂是一项重大挑战,这主要是由于缺陷的影响。在本研究中,我们采用密度泛函理论(DFT)探讨了常见点缺陷和杂质对 BeB 和 SiAs 的 p 型掺杂以及 SiB 和 SeAs 的 n 型掺杂的影响。我们发现,由 C、O 和 Si 形成的最有利的点缺陷是 CAs、OBOAs、SiAs、CAsSiB 和 OBSiAs,它们的形成能量小于 1.5eV。O 杂质对 p 型和 n 型掺杂都有不利影响,而 C 和 Si 杂质则对 n 型掺杂有害,因此 n 型掺杂是一个潜在的挑战。有趣的是,反位缺陷对 AsBBAs 有利于 p 型和 n 型掺杂。本研究提出的掺杂限制分析有可能为基于 BAs 的电子学领域的战略发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of point defects on shallow doping in cubic boron arsenide: A first principles study
Cubic boron arsenide (BAs) stands out as a promising material for advanced electronics, thanks to its exceptional thermal conductivity and ambipolar mobility. However, effective control of p- and n-type doping in BAs poses a significant challenge, mostly as a result of the influence of defects. In the present study, we employed density functional theory (DFT) to explore the impacts of the common point defects and impurities on p-type doping of BeB and SiAs, and on n-type doping of SiB and SeAs. We found that the most favorable point defects formed by C, O, and Si are CAs, OBOAs, SiAs, CAsSiB, and OBSiAs, which have formation energies of less than 1.5eV. While the O impurity detrimentally affects both p- and n-type dopings, C and Si impurities are harmful for n-type dopings, making n-type doping a potential challenge. Interestingly, the antisite defect pair AsBBAs benefits both p- and n-type doping. The doping limitation analysis presented in this study can potentially pave the way for strategic development in the area of BAs-based electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
The effective thermal and elastic properties of FiberForm: Computation, microstructure-sensitivity analysis and epistemic uncertainty quantification Investigation wettability of borophene surface: A reactive molecular dynamics simulation approach An integrated experimental and Ab initio study on irradiation resistance and mechanical properties of FeCr2V-based refractory medium entropy alloys Algorithmic solutions for the generation of digital material representation models of thin films and coatings Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1