{"title":"由多肽组装而成的同手性 \"8″形纳米多面体","authors":"Ruiqi Jin, Yue Du, Jiaping Lin, Chunhua Cai","doi":"10.1016/j.giant.2024.100343","DOIUrl":null,"url":null,"abstract":"<div><div>Figure eight-shaped (“8″-shaped) nanotoroids have been observed in DNA and proteins, however, they are rarely reported in synthetic polymer systems. Reported here is the formation of homochiral “8″-shaped nanotoroids from poly(γ-benzyl glutamate) (PBG) homopolymers. The L-type and D-type PBGs, i.e., PBLG and PBDG respectively, form left-handed and right-handed “8″-shaped chiral nanotoroids. The formation of the nanotoroids is achieved in a two-step route. Nanofibers are first self-assembled by the PBG homopolymers, which, with changing solvent nature, break into short nanofibers and twist into “8″-shaped nanotoroids. In such processes, the pendant phenyl groups of PBGs change from an extended to a contract form, which generates the internal stress driving the transition of nanofibers to “8″-shaped nanotoroids. This work not only enriches the topology and preparation method of nanotoroids, but also enhances our ability in controlling polymer nanostructures.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"20 ","pages":"Article 100343"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homochiral “8″-shaped nanotoroids assembled from polypeptides\",\"authors\":\"Ruiqi Jin, Yue Du, Jiaping Lin, Chunhua Cai\",\"doi\":\"10.1016/j.giant.2024.100343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Figure eight-shaped (“8″-shaped) nanotoroids have been observed in DNA and proteins, however, they are rarely reported in synthetic polymer systems. Reported here is the formation of homochiral “8″-shaped nanotoroids from poly(γ-benzyl glutamate) (PBG) homopolymers. The L-type and D-type PBGs, i.e., PBLG and PBDG respectively, form left-handed and right-handed “8″-shaped chiral nanotoroids. The formation of the nanotoroids is achieved in a two-step route. Nanofibers are first self-assembled by the PBG homopolymers, which, with changing solvent nature, break into short nanofibers and twist into “8″-shaped nanotoroids. In such processes, the pendant phenyl groups of PBGs change from an extended to a contract form, which generates the internal stress driving the transition of nanofibers to “8″-shaped nanotoroids. This work not only enriches the topology and preparation method of nanotoroids, but also enhances our ability in controlling polymer nanostructures.</div></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"20 \",\"pages\":\"Article 100343\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524001073\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524001073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在 DNA 和蛋白质中已经观察到图八形("8″形)纳米多面体,但在合成聚合物体系中却鲜有报道。本文报告了由聚(γ-苄基谷氨酸)(PBG)均聚物形成的同手性 "8″形纳米陀螺。L 型和 D 型 PBG(即 PBLG 和 PBDG)分别形成左手和右手 "8″形手性纳米多面体。纳米多面体的形成分为两个步骤。首先由 PBG 均聚物自组装成纳米纤维,随着溶剂性质的变化,纳米纤维断裂成短纳米纤维,并扭曲成 "8″形纳米多面体。在这一过程中,PBG 的垂苯基基团从扩展形式变为收缩形式,从而产生内应力,推动纳米纤维向 "8″形纳米多面体转变。这项工作不仅丰富了纳米多面体的拓扑结构和制备方法,而且提高了我们控制聚合物纳米结构的能力。
Homochiral “8″-shaped nanotoroids assembled from polypeptides
Figure eight-shaped (“8″-shaped) nanotoroids have been observed in DNA and proteins, however, they are rarely reported in synthetic polymer systems. Reported here is the formation of homochiral “8″-shaped nanotoroids from poly(γ-benzyl glutamate) (PBG) homopolymers. The L-type and D-type PBGs, i.e., PBLG and PBDG respectively, form left-handed and right-handed “8″-shaped chiral nanotoroids. The formation of the nanotoroids is achieved in a two-step route. Nanofibers are first self-assembled by the PBG homopolymers, which, with changing solvent nature, break into short nanofibers and twist into “8″-shaped nanotoroids. In such processes, the pendant phenyl groups of PBGs change from an extended to a contract form, which generates the internal stress driving the transition of nanofibers to “8″-shaped nanotoroids. This work not only enriches the topology and preparation method of nanotoroids, but also enhances our ability in controlling polymer nanostructures.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.