用于识别 ATP 的两亲性芘功能化三唑鎓

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Structure Pub Date : 2024-11-04 DOI:10.1016/j.molstruc.2024.140598
Hong-Wei Huang , Yue-Bo He , Zhao-Hui Xin , Qian-Yong Cao
{"title":"用于识别 ATP 的两亲性芘功能化三唑鎓","authors":"Hong-Wei Huang ,&nbsp;Yue-Bo He ,&nbsp;Zhao-Hui Xin ,&nbsp;Qian-Yong Cao","doi":"10.1016/j.molstruc.2024.140598","DOIUrl":null,"url":null,"abstract":"<div><div>Four pyrene functionalized triazolium salts with different lengths of alkyl tail from C4 to C16, i.e., <strong>PYTAZ-C4, PYTAZ-C8, PYTAZ-C12</strong> and <strong>PYTAZ-C16</strong>, have been designed and synthesized for ATP recognition. It was revealed that the longer alkyl tail anchored receptors <strong>PYTAZ-C12</strong> and <strong>PYTAZ-C16</strong> exhibit low CMC values, and self-assemble nanoaggregation at low concentration in aqueous solution, which show a pyrene-based excimer emission at 496 nm. However, the shorter alkyl anchored receptors <strong>PYTAZ-C4</strong> and <strong>PYTAZ-C8</strong> give only the pyrene-based monomer emission at 380 nm at the test concentration of 10 μM in aqueous solution. Importantly, <strong>PYTAZ-C12</strong> and <strong>PYTAZ-C16</strong> exhibit a good fluorescence turn-on response toward polyphosphate anions, especially ATP, with the detection limits of 2.5 μM and 0.77 μM, respectively. Furthermore, probe <strong>PYTAZ-C16</strong> was successfully used for fluorescence imaging of intracellular ATP in living cells.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140598"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amphiphilic pyrene-functionalized triazoliums for ATP recognition\",\"authors\":\"Hong-Wei Huang ,&nbsp;Yue-Bo He ,&nbsp;Zhao-Hui Xin ,&nbsp;Qian-Yong Cao\",\"doi\":\"10.1016/j.molstruc.2024.140598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Four pyrene functionalized triazolium salts with different lengths of alkyl tail from C4 to C16, i.e., <strong>PYTAZ-C4, PYTAZ-C8, PYTAZ-C12</strong> and <strong>PYTAZ-C16</strong>, have been designed and synthesized for ATP recognition. It was revealed that the longer alkyl tail anchored receptors <strong>PYTAZ-C12</strong> and <strong>PYTAZ-C16</strong> exhibit low CMC values, and self-assemble nanoaggregation at low concentration in aqueous solution, which show a pyrene-based excimer emission at 496 nm. However, the shorter alkyl anchored receptors <strong>PYTAZ-C4</strong> and <strong>PYTAZ-C8</strong> give only the pyrene-based monomer emission at 380 nm at the test concentration of 10 μM in aqueous solution. Importantly, <strong>PYTAZ-C12</strong> and <strong>PYTAZ-C16</strong> exhibit a good fluorescence turn-on response toward polyphosphate anions, especially ATP, with the detection limits of 2.5 μM and 0.77 μM, respectively. Furthermore, probe <strong>PYTAZ-C16</strong> was successfully used for fluorescence imaging of intracellular ATP in living cells.</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1322 \",\"pages\":\"Article 140598\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286024031065\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031065","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计并合成了四种芘官能化的三唑鎓盐,其烷基尾长度从 C4 到 C16 不等,即 PYTAZ-C4、PYTAZ-C8、PYTAZ-C12 和 PYTAZ-C16,用于识别 ATP。研究发现,PYTAZ-C12 和PYTAZ-C16 具有较长的烷基尾锚定受体,其 CMC 值较低,在水溶液中浓度较低时就会自组装成纳米聚集体,并在 496 纳米波长处显示出基于芘的准分子发射。然而,PYTAZ-C4 和PYTAZ-C8 这两种较短的烷基锚定受体在水溶液中的测试浓度为 10 μM 时,只能在 380 纳米波长处发出芘基单体辐射。重要的是,PYTAZ-C12 和 PYTAZ-C16 对多磷酸盐阴离子(尤其是 ATP)具有良好的荧光开启响应,检测限分别为 2.5 μM 和 0.77 μM。此外,探针PYTAZ-C16 还成功地用于活细胞内 ATP 的荧光成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amphiphilic pyrene-functionalized triazoliums for ATP recognition
Four pyrene functionalized triazolium salts with different lengths of alkyl tail from C4 to C16, i.e., PYTAZ-C4, PYTAZ-C8, PYTAZ-C12 and PYTAZ-C16, have been designed and synthesized for ATP recognition. It was revealed that the longer alkyl tail anchored receptors PYTAZ-C12 and PYTAZ-C16 exhibit low CMC values, and self-assemble nanoaggregation at low concentration in aqueous solution, which show a pyrene-based excimer emission at 496 nm. However, the shorter alkyl anchored receptors PYTAZ-C4 and PYTAZ-C8 give only the pyrene-based monomer emission at 380 nm at the test concentration of 10 μM in aqueous solution. Importantly, PYTAZ-C12 and PYTAZ-C16 exhibit a good fluorescence turn-on response toward polyphosphate anions, especially ATP, with the detection limits of 2.5 μM and 0.77 μM, respectively. Furthermore, probe PYTAZ-C16 was successfully used for fluorescence imaging of intracellular ATP in living cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
期刊最新文献
The effect of electron-withdrawing groups on the binding properties of bisphenol A to DNA: Insights from multi-spectral, electrochemical, and molecular docking Insight into the effect of terminal aromatic group on the mesomorphic, emissive and stimuli-responsive properties of cyanostyrene-based derivatives with multiple applications Unraveling the noncovalent interactions in a organic crystal using Quantum theory of atoms in molecules Topological characterization, entropy measures and prediction of properties of Iridium cored dendrimer Unveiling quorum sensing mechanisms: Computational docking and dynamics of bacterial receptors and ligands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1