Charles Surget , Sylvain Dubreuil , Jérôme Morio , Cécile Mattrand , Jean-Marc Bourinet , Nicolas Gayton
{"title":"基于敏感性分析的概率模型识别与统计估算之间的权衡","authors":"Charles Surget , Sylvain Dubreuil , Jérôme Morio , Cécile Mattrand , Jean-Marc Bourinet , Nicolas Gayton","doi":"10.1016/j.ress.2024.110545","DOIUrl":null,"url":null,"abstract":"<div><div>In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110545"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation\",\"authors\":\"Charles Surget , Sylvain Dubreuil , Jérôme Morio , Cécile Mattrand , Jean-Marc Bourinet , Nicolas Gayton\",\"doi\":\"10.1016/j.ress.2024.110545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"254 \",\"pages\":\"Article 110545\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006173\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006173","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A sensitivity analysis based trade-off between probabilistic model identification and statistical estimation
In a context of uncertainty quantification, the probabilistic model of a random vector at the input of a computational code is not always known. An identification of the joint distribution on a restricted sample of experimental data can lead to a bad calibration of the model. The quantity of interest estimated at the output of the code is then subject to a bi-level epistemic uncertainty that must be properly quantified. A first level arises from the statistical estimation whilst a second one comes from the identification of the probabilistic model. Each epistemic uncertainty can thus be reduced by an enrichment with new data, either by increasing the size of the estimation sample or by increasing the size of the identification sample. When gathering data is costly, it is then interesting to know which uncertainty source to reduce first, thus introducing a trade-off between simulation and physical experiment. This paper aims at presenting a sensitivity-analysis-guided enrichment procedure in a small data context to improve the estimation quality of a quantity of interest. The proposed methodology is shown to be both low cost and adaptive by introducing importance-sampling-based methods. The performance of the guided enrichment procedure is assessed on three examples.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.