通过自适应非参数密度估计法重建复杂 LSF 的分布和可靠性评估

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-10-30 DOI:10.1016/j.ress.2024.110609
Quanfu Yu , Jun Xu
{"title":"通过自适应非参数密度估计法重建复杂 LSF 的分布和可靠性评估","authors":"Quanfu Yu ,&nbsp;Jun Xu","doi":"10.1016/j.ress.2024.110609","DOIUrl":null,"url":null,"abstract":"<div><div>Complex limit state functions (LSFs), often characterized by strong nonlinearity, non-smoothness, or discontinuity, pose challenges for structural reliability analysis in engineering practices. Conventional methods for uncertainty propagation and reliability assessment may struggle to handle these issues effectively. This paper introduces a novel approach to adaptively reconstruct the unknown distributions of complex LSFs. The Non-parametric Density Estimation Method based on Harmonic Transform (NDEM-HT) is employed as the tool for this purpose. An adaptive strategy is then proposed to determine the number of harmonic moments required in NDEM-HT for achieving high accuracy. Specifically, the Adaptive Kernel Density Estimation (AKDE) method is also adopted to provide an initial estimation of the rough distribution. Subsequently, the optimal number of harmonic moments is determined by minimizing the relative entropy between the distributions obtained by AKDE and NDEM-HT. The efficacy of the proposed method is demonstrated through five numerical examples, considering various types of complex LSFs. Comparative results are also provided employing MCS along with both conventional and state-of-the-art methods.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110609"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution reconstruction and reliability assessment of complex LSFs via an adaptive Non-parametric Density Estimation Method\",\"authors\":\"Quanfu Yu ,&nbsp;Jun Xu\",\"doi\":\"10.1016/j.ress.2024.110609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Complex limit state functions (LSFs), often characterized by strong nonlinearity, non-smoothness, or discontinuity, pose challenges for structural reliability analysis in engineering practices. Conventional methods for uncertainty propagation and reliability assessment may struggle to handle these issues effectively. This paper introduces a novel approach to adaptively reconstruct the unknown distributions of complex LSFs. The Non-parametric Density Estimation Method based on Harmonic Transform (NDEM-HT) is employed as the tool for this purpose. An adaptive strategy is then proposed to determine the number of harmonic moments required in NDEM-HT for achieving high accuracy. Specifically, the Adaptive Kernel Density Estimation (AKDE) method is also adopted to provide an initial estimation of the rough distribution. Subsequently, the optimal number of harmonic moments is determined by minimizing the relative entropy between the distributions obtained by AKDE and NDEM-HT. The efficacy of the proposed method is demonstrated through five numerical examples, considering various types of complex LSFs. Comparative results are also provided employing MCS along with both conventional and state-of-the-art methods.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"254 \",\"pages\":\"Article 110609\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095183202400680X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095183202400680X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

复杂的极限状态函数(LSFs)通常具有很强的非线性、非平稳性或不连续性,给工程实践中的结构可靠性分析带来了挑战。传统的不确定性传播和可靠性评估方法可能难以有效处理这些问题。本文介绍了一种自适应重建复杂 LSF 未知分布的新方法。为此,本文采用了基于谐波变换的非参数密度估计方法(NDEM-HT)作为工具。然后提出了一种自适应策略,以确定 NDEM-HT 所需的谐波矩数量,从而实现高精度。具体来说,还采用了自适应核密度估计(AKDE)方法来提供粗略分布的初始估计。随后,通过最小化 AKDE 和 NDEM-HT 所得分布之间的相对熵,确定谐波矩的最佳数量。考虑到各种类型的复杂 LSF,通过五个数值示例展示了所提方法的功效。此外,还提供了 MCS 与传统方法和最先进方法的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distribution reconstruction and reliability assessment of complex LSFs via an adaptive Non-parametric Density Estimation Method
Complex limit state functions (LSFs), often characterized by strong nonlinearity, non-smoothness, or discontinuity, pose challenges for structural reliability analysis in engineering practices. Conventional methods for uncertainty propagation and reliability assessment may struggle to handle these issues effectively. This paper introduces a novel approach to adaptively reconstruct the unknown distributions of complex LSFs. The Non-parametric Density Estimation Method based on Harmonic Transform (NDEM-HT) is employed as the tool for this purpose. An adaptive strategy is then proposed to determine the number of harmonic moments required in NDEM-HT for achieving high accuracy. Specifically, the Adaptive Kernel Density Estimation (AKDE) method is also adopted to provide an initial estimation of the rough distribution. Subsequently, the optimal number of harmonic moments is determined by minimizing the relative entropy between the distributions obtained by AKDE and NDEM-HT. The efficacy of the proposed method is demonstrated through five numerical examples, considering various types of complex LSFs. Comparative results are also provided employing MCS along with both conventional and state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Lifting wavelet-informed hierarchical domain adaptation network: An interpretable digital twin-driven gearbox fault diagnosis method A novel sim2real reinforcement learning algorithm for process control Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition High-efficient non-iterative reliability-based design optimization based on the design space virtually conditionalized reliability evaluation method Pseudo-label assisted contrastive learning model for unsupervised open-set domain adaptation in fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1