通过金属气弧焊辅助线弧增材制造创新 4D 打印微结构

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2024-11-09 DOI:10.1016/j.jmapro.2024.11.005
Nadeem Fayaz Lone , Namrata Gangil , Dhruv Bajaj , Amit Arora , Daolun Chen , Arshad Noor Siddiquee
{"title":"通过金属气弧焊辅助线弧增材制造创新 4D 打印微结构","authors":"Nadeem Fayaz Lone ,&nbsp;Namrata Gangil ,&nbsp;Dhruv Bajaj ,&nbsp;Amit Arora ,&nbsp;Daolun Chen ,&nbsp;Arshad Noor Siddiquee","doi":"10.1016/j.jmapro.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>4D printing refers to the additive manufacturing of a component by incorporating smart materials. The smart materials add the “4th dimension” to 3D-printing by altering the shape/functionality/configuration of the part in response to external stimulus such as heat, stress, pH, electric field, etc. In the current study, shape memory alloy (SMA) plugs were implanted into mild-steel via gas metal arc welding (GMAW) assisted wire-arc additive manufacturing (WAAM). The NiTi SMA powder was employed as secondary addition within the printed layers, while the FeMnSi based alloy evolved in-situ during the 4D-printing process. Significant elemental heterogeneity was found in the Fe-Mn-Si based SMA plugs containing Ni<img>Fe rich solidified droplets, owing to the composition of the wire used for deposition. The Ni<img>Fe rich phases depicted the substitution of Ti by Fe in the NiTi pre-cursors. The large SMA plugs incorporated into the printed mild steel depicted the formation of a macro composite structure. The presented results are expected to considerably reduce the cost of SMA application through the printing of novel monolithic SMA-steel composites using wires and SMA powders as raw materials.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 416-424"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovating 4D-printed microstructures via gas metal arc welding assisted wire-arc additive manufacturing\",\"authors\":\"Nadeem Fayaz Lone ,&nbsp;Namrata Gangil ,&nbsp;Dhruv Bajaj ,&nbsp;Amit Arora ,&nbsp;Daolun Chen ,&nbsp;Arshad Noor Siddiquee\",\"doi\":\"10.1016/j.jmapro.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>4D printing refers to the additive manufacturing of a component by incorporating smart materials. The smart materials add the “4th dimension” to 3D-printing by altering the shape/functionality/configuration of the part in response to external stimulus such as heat, stress, pH, electric field, etc. In the current study, shape memory alloy (SMA) plugs were implanted into mild-steel via gas metal arc welding (GMAW) assisted wire-arc additive manufacturing (WAAM). The NiTi SMA powder was employed as secondary addition within the printed layers, while the FeMnSi based alloy evolved in-situ during the 4D-printing process. Significant elemental heterogeneity was found in the Fe-Mn-Si based SMA plugs containing Ni<img>Fe rich solidified droplets, owing to the composition of the wire used for deposition. The Ni<img>Fe rich phases depicted the substitution of Ti by Fe in the NiTi pre-cursors. The large SMA plugs incorporated into the printed mild steel depicted the formation of a macro composite structure. The presented results are expected to considerably reduce the cost of SMA application through the printing of novel monolithic SMA-steel composites using wires and SMA powders as raw materials.</div></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":\"132 \",\"pages\":\"Pages 416-424\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526612524011332\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524011332","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

4D 打印是指采用智能材料对部件进行增材制造。智能材料可在热量、应力、pH 值、电场等外部刺激下改变零件的形状/功能/配置,从而为三维打印增添 "第四维"。在当前的研究中,通过气体金属弧焊(GMAW)辅助线弧增材制造(WAAM)将形状记忆合金(SMA)塞植入低碳钢中。在 4D 打印过程中,镍钛 SMA 粉末被用作打印层内的二次添加物,而基于铁锰硅的合金则在原位演化。由于沉积所用金属丝的成分不同,在含有富含镍铁合金凝固液滴的铁锰硅基 SMA 塞中发现了明显的元素异质性。富含 NiFe 的物相表明,在 NiTi 前驱体中 Ti 被 Fe 取代。印刷低碳钢中的大块 SMA 塞描述了宏观复合结构的形成。通过使用金属丝和 SMA 粉末作为原材料打印新型整体 SMA 钢复合材料,上述结果有望大大降低 SMA 的应用成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovating 4D-printed microstructures via gas metal arc welding assisted wire-arc additive manufacturing
4D printing refers to the additive manufacturing of a component by incorporating smart materials. The smart materials add the “4th dimension” to 3D-printing by altering the shape/functionality/configuration of the part in response to external stimulus such as heat, stress, pH, electric field, etc. In the current study, shape memory alloy (SMA) plugs were implanted into mild-steel via gas metal arc welding (GMAW) assisted wire-arc additive manufacturing (WAAM). The NiTi SMA powder was employed as secondary addition within the printed layers, while the FeMnSi based alloy evolved in-situ during the 4D-printing process. Significant elemental heterogeneity was found in the Fe-Mn-Si based SMA plugs containing NiFe rich solidified droplets, owing to the composition of the wire used for deposition. The NiFe rich phases depicted the substitution of Ti by Fe in the NiTi pre-cursors. The large SMA plugs incorporated into the printed mild steel depicted the formation of a macro composite structure. The presented results are expected to considerably reduce the cost of SMA application through the printing of novel monolithic SMA-steel composites using wires and SMA powders as raw materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
Physics-informed inhomogeneous wear identification of end mills by online monitoring data Role of metal surface amorphization on enhancing interfacial bonding in TC4-UHMWPE hybrid structure Die design parameters effect on dimensional conformity of PEM fuel cell bipolar plates in rotary forming of SS316L thin sheets Enhancing controllability in ultra-precision grinding of anisotropic rounded diamond tools through an in situ feature identification approach Material deformation mechanism of polycrystalline tin in nanometric cutting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1