SARA 馏分热解的化学动力学:饱和物和芳烃

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Analytical and Applied Pyrolysis Pub Date : 2024-10-01 DOI:10.1016/j.jaap.2024.106818
Elia Colleoni , Paolo Guida , Vasilios G. Samaras , Alessio Frassoldati , Tiziano Faravelli , William L. Roberts
{"title":"SARA 馏分热解的化学动力学:饱和物和芳烃","authors":"Elia Colleoni ,&nbsp;Paolo Guida ,&nbsp;Vasilios G. Samaras ,&nbsp;Alessio Frassoldati ,&nbsp;Tiziano Faravelli ,&nbsp;William L. Roberts","doi":"10.1016/j.jaap.2024.106818","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript focuses on presenting a predictive and widely applicable model for describing the pyrolysis of saturates and aromatics, two of the so called SARA (Saturates, Aromatics, Resins, Asphaltenes) fractions. The fractions extracted from two different oil samples, a typical Heavy Fuel Oil 380 and a typical Vacuum Residue Oil, were thoroughly investigated. Different experimental methods elucidated the elemental composition, chemical structure, thermal degradation behavior, and characterized the products released during the pyrolysis of these two oils. Finally, a model to describe the pyrolysis of saturates and aromatics was developed. The model is comprehensive of methodology for the definition of a surrogate and a kinetic mechanism to describe its pyrolysis. The surrogate is defined using a certain number of pseudo-components, whose mass fraction in the mixture is defined to match the chemical properties of the actual fuel. A kinetic mechanism was defined by pairing each pseudo-component with a reaction to describe its thermal decomposition. The model was then validated against literature data and demonstrated to be predictive in describing the pyrolysis of different samples.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106818"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical kinetics of SARA fractions pyrolysis: Saturates and aromatics\",\"authors\":\"Elia Colleoni ,&nbsp;Paolo Guida ,&nbsp;Vasilios G. Samaras ,&nbsp;Alessio Frassoldati ,&nbsp;Tiziano Faravelli ,&nbsp;William L. Roberts\",\"doi\":\"10.1016/j.jaap.2024.106818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript focuses on presenting a predictive and widely applicable model for describing the pyrolysis of saturates and aromatics, two of the so called SARA (Saturates, Aromatics, Resins, Asphaltenes) fractions. The fractions extracted from two different oil samples, a typical Heavy Fuel Oil 380 and a typical Vacuum Residue Oil, were thoroughly investigated. Different experimental methods elucidated the elemental composition, chemical structure, thermal degradation behavior, and characterized the products released during the pyrolysis of these two oils. Finally, a model to describe the pyrolysis of saturates and aromatics was developed. The model is comprehensive of methodology for the definition of a surrogate and a kinetic mechanism to describe its pyrolysis. The surrogate is defined using a certain number of pseudo-components, whose mass fraction in the mixture is defined to match the chemical properties of the actual fuel. A kinetic mechanism was defined by pairing each pseudo-component with a reaction to describe its thermal decomposition. The model was then validated against literature data and demonstrated to be predictive in describing the pyrolysis of different samples.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106818\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016523702400473X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016523702400473X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本手稿重点介绍了一种可广泛应用的预测模型,用于描述饱和物和芳烃的热解过程,饱和物和芳烃是所谓的 SARA(饱和物、芳烃、树脂、沥青质)馏分中的两种。对从两种不同油样(典型的重燃油 380 和典型的真空渣油)中提取的馏分进行了深入研究。不同的实验方法阐明了这两种油在热解过程中的元素组成、化学结构、热降解行为以及释放产物的特征。最后,建立了一个描述饱和油和芳烃热解的模型。该模型包含定义代用品的方法和描述其热解的动力学机制。代用品是用一定数量的伪成分定义的,其在混合物中的质量分数与实际燃料的化学性质相匹配。通过将每种伪成分与描述其热分解的反应配对来定义动力学机制。然后根据文献数据对该模型进行了验证,并证明该模型在描述不同样品的热解过程中具有预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical kinetics of SARA fractions pyrolysis: Saturates and aromatics
This manuscript focuses on presenting a predictive and widely applicable model for describing the pyrolysis of saturates and aromatics, two of the so called SARA (Saturates, Aromatics, Resins, Asphaltenes) fractions. The fractions extracted from two different oil samples, a typical Heavy Fuel Oil 380 and a typical Vacuum Residue Oil, were thoroughly investigated. Different experimental methods elucidated the elemental composition, chemical structure, thermal degradation behavior, and characterized the products released during the pyrolysis of these two oils. Finally, a model to describe the pyrolysis of saturates and aromatics was developed. The model is comprehensive of methodology for the definition of a surrogate and a kinetic mechanism to describe its pyrolysis. The surrogate is defined using a certain number of pseudo-components, whose mass fraction in the mixture is defined to match the chemical properties of the actual fuel. A kinetic mechanism was defined by pairing each pseudo-component with a reaction to describe its thermal decomposition. The model was then validated against literature data and demonstrated to be predictive in describing the pyrolysis of different samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
期刊最新文献
Experimental and numerical investigation on pyrolysis and combustion behavior of biomass bast fibers: Hemp, flax and ramie fibers Ipoma batatas (sweet potato) leaf and leaf-based biochar as potential adsorbents for procion orange MX-2R removal from aqueous solution Pyrolysis and oxidation characteristics and energy self-sustaining process design of retired wind turbine blades A comprehensively experimental and kinetic modeling investigation of tetrahydropyran pyrolysis and oxidation in a jet-stirred reactor Methodologies for bio-oil characterization from biomass pyrolysis: A review focused on GC-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1