En Xu , Kai Zhao , Zhiwen Yu , Hui Wang , Siyuan Ren , Helei Cui , Yunji Liang , Bin Guo
{"title":"推荐系统中评级预测可预测性的上限","authors":"En Xu , Kai Zhao , Zhiwen Yu , Hui Wang , Siyuan Ren , Helei Cui , Yunji Liang , Bin Guo","doi":"10.1016/j.ipm.2024.103950","DOIUrl":null,"url":null,"abstract":"<div><div>The task of rating prediction has undergone extensive scrutiny, employing diverse modeling approaches to enhance accuracy. However, it remains uncertain whether a maximum accuracy, synonymous with predictability, exists for a given dataset, guiding the quest for optimal algorithms. While existing theories quantify predictability in one-dimensional symbol sequences, extending this to multidimensional and heterogeneous data poses challenges, rendering it unsuitable for rating prediction tasks. Our approach initially employs conditional entropy to quantify rating entropy, overcoming its inherent complexity by transforming it into two easily calculable entropies. Unlike conventional entropy measures, we utilize sample entropy to account for the numerical impact of rating sequences. Furthermore, novel metrics for quantifying entropy in numerical sequences are integrated to enhance predictability scaling. Demonstrating the effectiveness of our method across datasets of varying sizes and domains, current leading rating prediction algorithms achieve approximately 80% predictability.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103950"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bound on the predictability of rating prediction in recommender systems\",\"authors\":\"En Xu , Kai Zhao , Zhiwen Yu , Hui Wang , Siyuan Ren , Helei Cui , Yunji Liang , Bin Guo\",\"doi\":\"10.1016/j.ipm.2024.103950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The task of rating prediction has undergone extensive scrutiny, employing diverse modeling approaches to enhance accuracy. However, it remains uncertain whether a maximum accuracy, synonymous with predictability, exists for a given dataset, guiding the quest for optimal algorithms. While existing theories quantify predictability in one-dimensional symbol sequences, extending this to multidimensional and heterogeneous data poses challenges, rendering it unsuitable for rating prediction tasks. Our approach initially employs conditional entropy to quantify rating entropy, overcoming its inherent complexity by transforming it into two easily calculable entropies. Unlike conventional entropy measures, we utilize sample entropy to account for the numerical impact of rating sequences. Furthermore, novel metrics for quantifying entropy in numerical sequences are integrated to enhance predictability scaling. Demonstrating the effectiveness of our method across datasets of varying sizes and domains, current leading rating prediction algorithms achieve approximately 80% predictability.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 1\",\"pages\":\"Article 103950\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324003091\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003091","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Upper bound on the predictability of rating prediction in recommender systems
The task of rating prediction has undergone extensive scrutiny, employing diverse modeling approaches to enhance accuracy. However, it remains uncertain whether a maximum accuracy, synonymous with predictability, exists for a given dataset, guiding the quest for optimal algorithms. While existing theories quantify predictability in one-dimensional symbol sequences, extending this to multidimensional and heterogeneous data poses challenges, rendering it unsuitable for rating prediction tasks. Our approach initially employs conditional entropy to quantify rating entropy, overcoming its inherent complexity by transforming it into two easily calculable entropies. Unlike conventional entropy measures, we utilize sample entropy to account for the numerical impact of rating sequences. Furthermore, novel metrics for quantifying entropy in numerical sequences are integrated to enhance predictability scaling. Demonstrating the effectiveness of our method across datasets of varying sizes and domains, current leading rating prediction algorithms achieve approximately 80% predictability.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.