不同控制策略下通过 PCM 的动态熔化过程提高潜热蓄能系统的性能

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-10 DOI:10.1016/j.applthermaleng.2024.124903
Yee-Ting Lee , Yen-Ren Liao , Liang-Han Chien , Fan-Bill Cheung , An-Shik Yang
{"title":"不同控制策略下通过 PCM 的动态熔化过程提高潜热蓄能系统的性能","authors":"Yee-Ting Lee ,&nbsp;Yen-Ren Liao ,&nbsp;Liang-Han Chien ,&nbsp;Fan-Bill Cheung ,&nbsp;An-Shik Yang","doi":"10.1016/j.applthermaleng.2024.124903","DOIUrl":null,"url":null,"abstract":"<div><div>Latent heat thermal energy storage (LHTES) systems merging high energy densities with near isotherm operations have made a reliable solution to ease the intermittence difficulties of renewable energy and manage periodic energy demands to ensure supply–demand balances on electricity grids. This study experimentally and numerically explores the liquefaction characteristics of phase change material (PCM) in the LHTES tank with the dynamic melting technique, involving the liquid PCM recirculation in the liquefying process to enhance the melting outcomes. Experimental measurements are conducted to investigate the dynamic melting progression for revealing the system effectiveness in terms of the complete melt time and mean power with different control strategies modifying the formations and inlet velocities of recirculating PCM flows. The computational fluid dynamics (CFD) simulations are also conducted to resolve the liquid fraction, vorticity and temperature distributions for offering the insights of the transfiguration of heat transfer and liquefaction behaviors. The photos of ice-water interfaces and measured temperature data in the LHTES tank are thus acquired to verify the computational model generating the CFD predictions. The performance assessments signpost the optimization of dynamic melting arrangements adopting the top to bottom layout with a PCM inlet velocity of 0.22 m/s, achieving the reduction of full melting time by 48.1 % and the enhancement of estimated mean power by 132.6 %, respectively.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"259 ","pages":"Article 124903"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance enhancement of latent heat thermal energy storage systems via dynamic melting process of PCM under different control strategies\",\"authors\":\"Yee-Ting Lee ,&nbsp;Yen-Ren Liao ,&nbsp;Liang-Han Chien ,&nbsp;Fan-Bill Cheung ,&nbsp;An-Shik Yang\",\"doi\":\"10.1016/j.applthermaleng.2024.124903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Latent heat thermal energy storage (LHTES) systems merging high energy densities with near isotherm operations have made a reliable solution to ease the intermittence difficulties of renewable energy and manage periodic energy demands to ensure supply–demand balances on electricity grids. This study experimentally and numerically explores the liquefaction characteristics of phase change material (PCM) in the LHTES tank with the dynamic melting technique, involving the liquid PCM recirculation in the liquefying process to enhance the melting outcomes. Experimental measurements are conducted to investigate the dynamic melting progression for revealing the system effectiveness in terms of the complete melt time and mean power with different control strategies modifying the formations and inlet velocities of recirculating PCM flows. The computational fluid dynamics (CFD) simulations are also conducted to resolve the liquid fraction, vorticity and temperature distributions for offering the insights of the transfiguration of heat transfer and liquefaction behaviors. The photos of ice-water interfaces and measured temperature data in the LHTES tank are thus acquired to verify the computational model generating the CFD predictions. The performance assessments signpost the optimization of dynamic melting arrangements adopting the top to bottom layout with a PCM inlet velocity of 0.22 m/s, achieving the reduction of full melting time by 48.1 % and the enhancement of estimated mean power by 132.6 %, respectively.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"259 \",\"pages\":\"Article 124903\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124025717\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

潜热蓄能(LHTES)系统兼具高能量密度和接近等温线的运行特性,是缓解可再生能源间歇性难题和管理周期性能源需求以确保电网供需平衡的可靠解决方案。本研究通过实验和数值计算,利用动态熔化技术探讨了相变材料(PCM)在 LHTES 罐中的液化特性,其中涉及液化过程中的液态 PCM 再循环,以提高熔化效果。通过实验测量来研究动态熔化过程,以揭示不同控制策略下完整熔化时间和平均功率的系统有效性,这些控制策略改变了再循环 PCM 流动的形式和入口速度。此外,还进行了计算流体动力学(CFD)模拟,以解析液体分数、涡度和温度分布,从而深入了解传热和液化行为的变化。因此,获得的冰水界面照片和 LHTES 罐内的实测温度数据可用于验证产生 CFD 预测值的计算模型。性能评估表明,采用 0.22 米/秒 PCM 入口速度的自上而下布局优化了动态熔化安排,使完全熔化时间缩短了 48.1%,估计平均功率提高了 132.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance enhancement of latent heat thermal energy storage systems via dynamic melting process of PCM under different control strategies
Latent heat thermal energy storage (LHTES) systems merging high energy densities with near isotherm operations have made a reliable solution to ease the intermittence difficulties of renewable energy and manage periodic energy demands to ensure supply–demand balances on electricity grids. This study experimentally and numerically explores the liquefaction characteristics of phase change material (PCM) in the LHTES tank with the dynamic melting technique, involving the liquid PCM recirculation in the liquefying process to enhance the melting outcomes. Experimental measurements are conducted to investigate the dynamic melting progression for revealing the system effectiveness in terms of the complete melt time and mean power with different control strategies modifying the formations and inlet velocities of recirculating PCM flows. The computational fluid dynamics (CFD) simulations are also conducted to resolve the liquid fraction, vorticity and temperature distributions for offering the insights of the transfiguration of heat transfer and liquefaction behaviors. The photos of ice-water interfaces and measured temperature data in the LHTES tank are thus acquired to verify the computational model generating the CFD predictions. The performance assessments signpost the optimization of dynamic melting arrangements adopting the top to bottom layout with a PCM inlet velocity of 0.22 m/s, achieving the reduction of full melting time by 48.1 % and the enhancement of estimated mean power by 132.6 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Vortex-enhanced jet impingement and the role of impulse generation rate in heat removal using additively manufactured synthetic jet devices Experimental study and simulation of the rectifier nozzle-type critical distributor applied to the application of row tube plate instant freezer High temperature in-situ 3D monitor of microstructure evolution and heat transfer performance of metal foam Pulverization of municipal solid waste and utilization of pulverized product as alternative fuel for blast furnace injection Flow boiling of HFE-7100 for cooling Multi-Chip modules using manifold microchannels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1