Bassey O. Ekpong , Miracle N. Ogbogu , Henry O. Edet , Emmanuel Emmanuel
{"title":"用 As、Bi、Sb 和 P 单掺杂钇包封富勒烯 (Y@C80),增强甲基丙二酸 (MMA) 的传感,作为维生素 B12 缺乏症的生物标志物:DFT 研究","authors":"Bassey O. Ekpong , Miracle N. Ogbogu , Henry O. Edet , Emmanuel Emmanuel","doi":"10.1016/j.comptc.2024.114972","DOIUrl":null,"url":null,"abstract":"<div><div>The development of new approaches or approaches for the detection of methylmalonic acid from biological samples is now necessary for early diagnosis of vitamin B<sub>12</sub> deficiency and appropriate treatment. In this study, Yttrium-encapsulated fullerene (Y@C<sub>80</sub>) doped with arsenic (As), bismuth (Bi), phosphorous (P), and antimony (Sb) was investigated for its ability to sense methylmalonic acid (MMA) as a biomarker using M06-2X/GenECP/def2svp/LanL2DZ method. The nanostructural analysis showed a marginal deviation in the bond lengths between atoms of the structure upon optimization of the structures interacting with the MMA biomarker, which demonstrated the stability of the system for sensing. The HOMO-LUMO reactivity descriptor revealed that the compound was reactive toward the sensing of the MMA biomarker, as the various systems MMA_As_Y@C<sub>80</sub>, MMA_Bi_Y@C<sub>80</sub>, MMA_P_Y@C<sub>80</sub>, and MMA_Sb_Y@C<sub>80</sub> demonstrated relatively short energy gaps of 2.039 eV, 2.025 eV, 2.135 eV, and 2.023 eV, respectively. The nanomaterial strongly adsorbed the biomarker, as indicated by the negative adsorption energies of −0.47075 eV, −0.70478 eV, 0.9034 eV, and −0.5388 eV corresponding to MMA_As_Y@C<sub>80</sub>, MMA_Bi_Y@C<sub>80</sub>, MMA_P_Y@C<sub>80</sub>, and MMA_Sb_Y@C<sub>80</sub>, respectively; however, MMA-P-Y@C<sub>80</sub> showed a weaker ability to sense the biomarker. Additionally, the recovery time after the detection of the biomarker was relatively short, comparable to the increase in the adsorption strength, with MMA-Bi-Y@C<sub>80</sub> having the shortest recovery time (3.829 × 10<sup>−37</sup>). This is significant for the development of a highly sensitive and efficient technique for methylmalonic acid (MMA) biomarker sensing.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114972"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yttrium-encapsulated fullerene (Y@C80) mono-doping with As, Bi, Sb, and P for the enhanced sensing of methylmalonic acid (MMA) as a biomarker for vitamin B12 deficiency: A DFT study\",\"authors\":\"Bassey O. Ekpong , Miracle N. Ogbogu , Henry O. Edet , Emmanuel Emmanuel\",\"doi\":\"10.1016/j.comptc.2024.114972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of new approaches or approaches for the detection of methylmalonic acid from biological samples is now necessary for early diagnosis of vitamin B<sub>12</sub> deficiency and appropriate treatment. In this study, Yttrium-encapsulated fullerene (Y@C<sub>80</sub>) doped with arsenic (As), bismuth (Bi), phosphorous (P), and antimony (Sb) was investigated for its ability to sense methylmalonic acid (MMA) as a biomarker using M06-2X/GenECP/def2svp/LanL2DZ method. The nanostructural analysis showed a marginal deviation in the bond lengths between atoms of the structure upon optimization of the structures interacting with the MMA biomarker, which demonstrated the stability of the system for sensing. The HOMO-LUMO reactivity descriptor revealed that the compound was reactive toward the sensing of the MMA biomarker, as the various systems MMA_As_Y@C<sub>80</sub>, MMA_Bi_Y@C<sub>80</sub>, MMA_P_Y@C<sub>80</sub>, and MMA_Sb_Y@C<sub>80</sub> demonstrated relatively short energy gaps of 2.039 eV, 2.025 eV, 2.135 eV, and 2.023 eV, respectively. The nanomaterial strongly adsorbed the biomarker, as indicated by the negative adsorption energies of −0.47075 eV, −0.70478 eV, 0.9034 eV, and −0.5388 eV corresponding to MMA_As_Y@C<sub>80</sub>, MMA_Bi_Y@C<sub>80</sub>, MMA_P_Y@C<sub>80</sub>, and MMA_Sb_Y@C<sub>80</sub>, respectively; however, MMA-P-Y@C<sub>80</sub> showed a weaker ability to sense the biomarker. Additionally, the recovery time after the detection of the biomarker was relatively short, comparable to the increase in the adsorption strength, with MMA-Bi-Y@C<sub>80</sub> having the shortest recovery time (3.829 × 10<sup>−37</sup>). This is significant for the development of a highly sensitive and efficient technique for methylmalonic acid (MMA) biomarker sensing.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1242 \",\"pages\":\"Article 114972\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X24005115\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24005115","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Yttrium-encapsulated fullerene (Y@C80) mono-doping with As, Bi, Sb, and P for the enhanced sensing of methylmalonic acid (MMA) as a biomarker for vitamin B12 deficiency: A DFT study
The development of new approaches or approaches for the detection of methylmalonic acid from biological samples is now necessary for early diagnosis of vitamin B12 deficiency and appropriate treatment. In this study, Yttrium-encapsulated fullerene (Y@C80) doped with arsenic (As), bismuth (Bi), phosphorous (P), and antimony (Sb) was investigated for its ability to sense methylmalonic acid (MMA) as a biomarker using M06-2X/GenECP/def2svp/LanL2DZ method. The nanostructural analysis showed a marginal deviation in the bond lengths between atoms of the structure upon optimization of the structures interacting with the MMA biomarker, which demonstrated the stability of the system for sensing. The HOMO-LUMO reactivity descriptor revealed that the compound was reactive toward the sensing of the MMA biomarker, as the various systems MMA_As_Y@C80, MMA_Bi_Y@C80, MMA_P_Y@C80, and MMA_Sb_Y@C80 demonstrated relatively short energy gaps of 2.039 eV, 2.025 eV, 2.135 eV, and 2.023 eV, respectively. The nanomaterial strongly adsorbed the biomarker, as indicated by the negative adsorption energies of −0.47075 eV, −0.70478 eV, 0.9034 eV, and −0.5388 eV corresponding to MMA_As_Y@C80, MMA_Bi_Y@C80, MMA_P_Y@C80, and MMA_Sb_Y@C80, respectively; however, MMA-P-Y@C80 showed a weaker ability to sense the biomarker. Additionally, the recovery time after the detection of the biomarker was relatively short, comparable to the increase in the adsorption strength, with MMA-Bi-Y@C80 having the shortest recovery time (3.829 × 10−37). This is significant for the development of a highly sensitive and efficient technique for methylmalonic acid (MMA) biomarker sensing.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.