Yunqing Xiong , Zixuan Xu , Tiansui Zhang , Guangfang Li , Zhuo Huang , Yi Fan , Hongfang Liu
{"title":"液化天然气储罐底部废水中的铁氧化细菌对高锰钢的腐蚀行为","authors":"Yunqing Xiong , Zixuan Xu , Tiansui Zhang , Guangfang Li , Zhuo Huang , Yi Fan , Hongfang Liu","doi":"10.1016/j.corsci.2024.112561","DOIUrl":null,"url":null,"abstract":"<div><div>High manganese steel is a new generation of material for the fabrication of liquefied natural gas (LNG) storage tanks. The corrosion behavior of high manganese steel induced by iron-oxidizing bacteria (IOB) living in wastewater from LNG tanks bottom was investigated. The results revealed that IOB can induce a generation of a dense and thick biotransformation film on the steel. Interestingly, the biotransformation film could be able to reduce the corrosion rate of high manganese steel by 71 % and alleviate the formation of corrosion pits. A corrosion inhibition mechanism is postulated, elucidating the protective role of the iron-manganese oxide composite biofilm.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"242 ","pages":"Article 112561"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behavior of high manganese steel by iron-oxidizing bacteria in wastewater at the bottom of liquefied natural gas storage tanks\",\"authors\":\"Yunqing Xiong , Zixuan Xu , Tiansui Zhang , Guangfang Li , Zhuo Huang , Yi Fan , Hongfang Liu\",\"doi\":\"10.1016/j.corsci.2024.112561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High manganese steel is a new generation of material for the fabrication of liquefied natural gas (LNG) storage tanks. The corrosion behavior of high manganese steel induced by iron-oxidizing bacteria (IOB) living in wastewater from LNG tanks bottom was investigated. The results revealed that IOB can induce a generation of a dense and thick biotransformation film on the steel. Interestingly, the biotransformation film could be able to reduce the corrosion rate of high manganese steel by 71 % and alleviate the formation of corrosion pits. A corrosion inhibition mechanism is postulated, elucidating the protective role of the iron-manganese oxide composite biofilm.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"242 \",\"pages\":\"Article 112561\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X24007571\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007571","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion behavior of high manganese steel by iron-oxidizing bacteria in wastewater at the bottom of liquefied natural gas storage tanks
High manganese steel is a new generation of material for the fabrication of liquefied natural gas (LNG) storage tanks. The corrosion behavior of high manganese steel induced by iron-oxidizing bacteria (IOB) living in wastewater from LNG tanks bottom was investigated. The results revealed that IOB can induce a generation of a dense and thick biotransformation film on the steel. Interestingly, the biotransformation film could be able to reduce the corrosion rate of high manganese steel by 71 % and alleviate the formation of corrosion pits. A corrosion inhibition mechanism is postulated, elucidating the protective role of the iron-manganese oxide composite biofilm.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.