通过缺陷控制和界面接触优化实现 11.23 % 的 CZTSSe 太阳能电池效率

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-11-15 DOI:10.1016/j.solener.2024.112913
Letu Siqin, Chenjun Yang, Jingyuan Guo, Yutian Wang, Lei Wang, Yuan Li, Yiming Wang, Shuyu Li, Xiangyu Chen, Hongmei Luan, Ruijian Liu, Chengjun Zhu
{"title":"通过缺陷控制和界面接触优化实现 11.23 % 的 CZTSSe 太阳能电池效率","authors":"Letu Siqin,&nbsp;Chenjun Yang,&nbsp;Jingyuan Guo,&nbsp;Yutian Wang,&nbsp;Lei Wang,&nbsp;Yuan Li,&nbsp;Yiming Wang,&nbsp;Shuyu Li,&nbsp;Xiangyu Chen,&nbsp;Hongmei Luan,&nbsp;Ruijian Liu,&nbsp;Chengjun Zhu","doi":"10.1016/j.solener.2024.112913","DOIUrl":null,"url":null,"abstract":"<div><div>The high open-circuit voltage deficit (V<sub>OC, def</sub>) caused by structural imperfections in the absorber layer and charge loss during carrier transport is a critical barrier affecting the performance of Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) devices. In this work, Ag was added to the DMF-based Cu<sup>+</sup>-Sn<sup>4+</sup> system, which significantly improved the crystal morphology and electrical properties of the absorber layer. Additionally, optimizing the selenization process not only reduced surface roughness and eliminated voids at the bottom of the absorber layer but also resulted in the formation of a MoSe<sub>2</sub> back interface layer with a more suitable thickness. These measures collectively enhanced the overall quality of the absorber layer, reducing the formation of deep-level defect clusters and effectively boosting carrier transport efficiency. Consequently, the concentration of bulk and interfacial defects decreased, and the impact of potential barriers on carrier movement was minimized. With these comprehensive improvements, the power conversion efficiency of CZTSSe solar cells increased from 8.48 % to 11.23 %. Our research demonstrates that optimizing the structure of the absorber layer can effectively enhance the performance of CZTSSe solar cells, providing valuable insights for the fabrication of high-efficiency devices in the future.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 112913"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving 11.23 % efficiency in CZTSSe solar cells via defect control and interface contact optimization\",\"authors\":\"Letu Siqin,&nbsp;Chenjun Yang,&nbsp;Jingyuan Guo,&nbsp;Yutian Wang,&nbsp;Lei Wang,&nbsp;Yuan Li,&nbsp;Yiming Wang,&nbsp;Shuyu Li,&nbsp;Xiangyu Chen,&nbsp;Hongmei Luan,&nbsp;Ruijian Liu,&nbsp;Chengjun Zhu\",\"doi\":\"10.1016/j.solener.2024.112913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The high open-circuit voltage deficit (V<sub>OC, def</sub>) caused by structural imperfections in the absorber layer and charge loss during carrier transport is a critical barrier affecting the performance of Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) devices. In this work, Ag was added to the DMF-based Cu<sup>+</sup>-Sn<sup>4+</sup> system, which significantly improved the crystal morphology and electrical properties of the absorber layer. Additionally, optimizing the selenization process not only reduced surface roughness and eliminated voids at the bottom of the absorber layer but also resulted in the formation of a MoSe<sub>2</sub> back interface layer with a more suitable thickness. These measures collectively enhanced the overall quality of the absorber layer, reducing the formation of deep-level defect clusters and effectively boosting carrier transport efficiency. Consequently, the concentration of bulk and interfacial defects decreased, and the impact of potential barriers on carrier movement was minimized. With these comprehensive improvements, the power conversion efficiency of CZTSSe solar cells increased from 8.48 % to 11.23 %. Our research demonstrates that optimizing the structure of the absorber layer can effectively enhance the performance of CZTSSe solar cells, providing valuable insights for the fabrication of high-efficiency devices in the future.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"283 \",\"pages\":\"Article 112913\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X2400608X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X2400608X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

吸收层结构缺陷和载流子传输过程中的电荷损耗导致的高开路电压不足(VOC,def)是影响 Cu2ZnSn(S,Se)4 (CZTSSe) 器件性能的关键障碍。在这项工作中,Ag 被添加到基于 DMF 的 Cu+-Sn4+ 体系中,从而显著改善了吸收层的晶体形态和电性能。此外,优化硒化工艺不仅降低了表面粗糙度,消除了吸收层底部的空隙,还形成了厚度更合适的 MoSe2 背界面层。这些措施共同提高了吸收层的整体质量,减少了深层缺陷簇的形成,有效提高了载流子传输效率。因此,块状缺陷和界面缺陷的浓度降低了,势垒对载流子运动的影响也降到了最低。通过这些综合改进,CZTSSe 太阳能电池的功率转换效率从 8.48% 提高到 11.23%。我们的研究表明,优化吸收层结构可有效提高 CZTSSe 太阳能电池的性能,为未来制造高效器件提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving 11.23 % efficiency in CZTSSe solar cells via defect control and interface contact optimization
The high open-circuit voltage deficit (VOC, def) caused by structural imperfections in the absorber layer and charge loss during carrier transport is a critical barrier affecting the performance of Cu2ZnSn(S,Se)4 (CZTSSe) devices. In this work, Ag was added to the DMF-based Cu+-Sn4+ system, which significantly improved the crystal morphology and electrical properties of the absorber layer. Additionally, optimizing the selenization process not only reduced surface roughness and eliminated voids at the bottom of the absorber layer but also resulted in the formation of a MoSe2 back interface layer with a more suitable thickness. These measures collectively enhanced the overall quality of the absorber layer, reducing the formation of deep-level defect clusters and effectively boosting carrier transport efficiency. Consequently, the concentration of bulk and interfacial defects decreased, and the impact of potential barriers on carrier movement was minimized. With these comprehensive improvements, the power conversion efficiency of CZTSSe solar cells increased from 8.48 % to 11.23 %. Our research demonstrates that optimizing the structure of the absorber layer can effectively enhance the performance of CZTSSe solar cells, providing valuable insights for the fabrication of high-efficiency devices in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1