利用两级分数级融合和 CNN 模型进行基于 MRI 的脑肿瘤集合分类

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-11-07 DOI:10.1016/j.eij.2024.100565
Oussama Bouguerra, Bilal Attallah, Youcef Brik
{"title":"利用两级分数级融合和 CNN 模型进行基于 MRI 的脑肿瘤集合分类","authors":"Oussama Bouguerra,&nbsp;Bilal Attallah,&nbsp;Youcef Brik","doi":"10.1016/j.eij.2024.100565","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel two-stage approach to improve brain tumor classification accuracy using the Br35H MRI Scan Dataset. The first stage employs advanced image enhancement algorithms, GFPGAN and Real-ESRGAN, to enhance the image dataset’s quality, sharpness, and resolution. Nine deep learning models are then trained and tested on the enhanced dataset, experimenting with five optimizers. In the second stage, ensemble learning algorithms like weighted sum, fuzzy rank, and majority vote are used to combine the scores from the trained models, enhancing prediction results. The top 2, 3, 4, and 5 classifiers are selected for ensemble learning at each rating level. The system’s performance is evaluated using accuracy, recall, precision, and F1-score. It achieves 100% accuracy when using the GFPGAN-enhanced dataset and combining the top 5 classifiers through ensemble learning, outperforming current methodologies in brain tumor classification. These compelling results underscore the potential of our approach in providing highly accurate and effective brain tumor classification.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100565"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI-based brain tumor ensemble classification using two stage score level fusion and CNN models\",\"authors\":\"Oussama Bouguerra,&nbsp;Bilal Attallah,&nbsp;Youcef Brik\",\"doi\":\"10.1016/j.eij.2024.100565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a novel two-stage approach to improve brain tumor classification accuracy using the Br35H MRI Scan Dataset. The first stage employs advanced image enhancement algorithms, GFPGAN and Real-ESRGAN, to enhance the image dataset’s quality, sharpness, and resolution. Nine deep learning models are then trained and tested on the enhanced dataset, experimenting with five optimizers. In the second stage, ensemble learning algorithms like weighted sum, fuzzy rank, and majority vote are used to combine the scores from the trained models, enhancing prediction results. The top 2, 3, 4, and 5 classifiers are selected for ensemble learning at each rating level. The system’s performance is evaluated using accuracy, recall, precision, and F1-score. It achieves 100% accuracy when using the GFPGAN-enhanced dataset and combining the top 5 classifiers through ensemble learning, outperforming current methodologies in brain tumor classification. These compelling results underscore the potential of our approach in providing highly accurate and effective brain tumor classification.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"28 \",\"pages\":\"Article 100565\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524001282\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001282","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的两阶段方法,利用 Br35H MRI 扫描数据集提高脑肿瘤分类的准确性。第一阶段采用先进的图像增强算法 GFPGAN 和 Real-ESRGAN,以提高图像数据集的质量、清晰度和分辨率。然后在增强后的数据集上训练和测试九个深度学习模型,并使用五个优化器进行实验。在第二阶段,使用加权和、模糊排名和多数票等集合学习算法来综合训练模型的得分,从而提高预测结果。在每个评级级别上,都会选择前 2、3、4 和 5 个分类器进行集合学习。系统的性能使用准确率、召回率、精确度和 F1 分数进行评估。当使用 GFPGAN 增强数据集并通过集合学习将前 5 个分类器组合在一起时,该系统的准确率达到了 100%,在脑肿瘤分类方面优于当前的方法。这些令人信服的结果凸显了我们的方法在提供高度准确和有效的脑肿瘤分类方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI-based brain tumor ensemble classification using two stage score level fusion and CNN models
This paper proposes a novel two-stage approach to improve brain tumor classification accuracy using the Br35H MRI Scan Dataset. The first stage employs advanced image enhancement algorithms, GFPGAN and Real-ESRGAN, to enhance the image dataset’s quality, sharpness, and resolution. Nine deep learning models are then trained and tested on the enhanced dataset, experimenting with five optimizers. In the second stage, ensemble learning algorithms like weighted sum, fuzzy rank, and majority vote are used to combine the scores from the trained models, enhancing prediction results. The top 2, 3, 4, and 5 classifiers are selected for ensemble learning at each rating level. The system’s performance is evaluated using accuracy, recall, precision, and F1-score. It achieves 100% accuracy when using the GFPGAN-enhanced dataset and combining the top 5 classifiers through ensemble learning, outperforming current methodologies in brain tumor classification. These compelling results underscore the potential of our approach in providing highly accurate and effective brain tumor classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
An improved multiobjective evolutionary algorithm for time-dependent vehicle routing problem with time windows Distributed hybrid flowshop scheduling with consistent sublots under delivery time windows: A penalty lot-assisted iterated greedy algorithm Cyber epidemic spread forecasting based on the entropy-extremal dynamic interpretation of the SIR model BACAD: AI-based framework for detecting vertical broken access control attacks MRI-based brain tumor ensemble classification using two stage score level fusion and CNN models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1