基于机器学习的室内环境温度和舒适度参数预测模型(使用实验数据

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-08 DOI:10.1016/j.applthermaleng.2024.124852
Ahmet Dogan , Nurullah Kayaci , Aykut Bacak
{"title":"基于机器学习的室内环境温度和舒适度参数预测模型(使用实验数据","authors":"Ahmet Dogan ,&nbsp;Nurullah Kayaci ,&nbsp;Aykut Bacak","doi":"10.1016/j.applthermaleng.2024.124852","DOIUrl":null,"url":null,"abstract":"<div><div>The research introduces an artificial neural network model that predicts temperature and assesses thermal comfort metrics for a cooling room, demonstrating how machine learning advancements can enhance thermal efficiency and cost-effectiveness in building design. The study utilized the Levenberg-Marquardt (LM) artificial neural network (ANN) approach to derive the average temperature and thermal comfort metrics collected under actual operating settings. The Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD)values were measured at three distinct sites and then compared to the trial findings. The model uses a dataset of 205 observations, with 143 cases used for training and 31 examples for testing and validation. The ANN model demonstrated effective training, with negligible errors in estimated error values. The mean squared error values for average temperature and thermal comfort parameters were 0.0342, 0.0376, 0.0571, 0.0029, and 0.2296. The R values for temperature measurements are 0.9947 and 0.9923, 0.9847 and 0.9437, and 0.9737, demonstrating a highly effective engineering method. The ANN model provided precise predictions for temperature and thermal comfort metrics, such as PMV and PPD in a cooling chamber, with a tolerance of ± 15 %. The LM approach, a machine learning methodology, produced excellent outcomes, particularly at lower temperatures, with 15 % of the data exceeding this range.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"259 ","pages":"Article 124852"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based predictive model for temperature and comfort parameters in indoor enviroment using experimantal data\",\"authors\":\"Ahmet Dogan ,&nbsp;Nurullah Kayaci ,&nbsp;Aykut Bacak\",\"doi\":\"10.1016/j.applthermaleng.2024.124852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research introduces an artificial neural network model that predicts temperature and assesses thermal comfort metrics for a cooling room, demonstrating how machine learning advancements can enhance thermal efficiency and cost-effectiveness in building design. The study utilized the Levenberg-Marquardt (LM) artificial neural network (ANN) approach to derive the average temperature and thermal comfort metrics collected under actual operating settings. The Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD)values were measured at three distinct sites and then compared to the trial findings. The model uses a dataset of 205 observations, with 143 cases used for training and 31 examples for testing and validation. The ANN model demonstrated effective training, with negligible errors in estimated error values. The mean squared error values for average temperature and thermal comfort parameters were 0.0342, 0.0376, 0.0571, 0.0029, and 0.2296. The R values for temperature measurements are 0.9947 and 0.9923, 0.9847 and 0.9437, and 0.9737, demonstrating a highly effective engineering method. The ANN model provided precise predictions for temperature and thermal comfort metrics, such as PMV and PPD in a cooling chamber, with a tolerance of ± 15 %. The LM approach, a machine learning methodology, produced excellent outcomes, particularly at lower temperatures, with 15 % of the data exceeding this range.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"259 \",\"pages\":\"Article 124852\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124025201\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

研究介绍了一种人工神经网络模型,该模型可预测冷却室的温度并评估热舒适度指标,展示了机器学习的进步如何提高建筑设计的热效率和成本效益。该研究利用 Levenberg-Marquardt (LM)人工神经网络(ANN)方法,得出了在实际运行环境下收集到的平均温度和热舒适度指标。在三个不同地点测量了预测平均投票(PMV)和预测不满意百分比(PPD)值,然后与试验结果进行比较。该模型使用了一个包含 205 个观测值的数据集,其中 143 个案例用于训练,31 个案例用于测试和验证。ANN 模型的训练效果显著,估计误差值的误差可以忽略不计。平均温度和热舒适度参数的均方误差值分别为 0.0342、0.0376、0.0571、0.0029 和 0.2296。温度测量的 R 值分别为 0.9947 和 0.9923,0.9847 和 0.9437,以及 0.9737,表明这是一种高效的工程方法。ANN 模型对冷却室的温度和热舒适度指标(如 PMV 和 PPD)进行了精确预测,误差为 ± 15%。LM 方法(一种机器学习方法)产生了出色的结果,尤其是在较低温度下,15% 的数据超出了这一范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based predictive model for temperature and comfort parameters in indoor enviroment using experimantal data
The research introduces an artificial neural network model that predicts temperature and assesses thermal comfort metrics for a cooling room, demonstrating how machine learning advancements can enhance thermal efficiency and cost-effectiveness in building design. The study utilized the Levenberg-Marquardt (LM) artificial neural network (ANN) approach to derive the average temperature and thermal comfort metrics collected under actual operating settings. The Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD)values were measured at three distinct sites and then compared to the trial findings. The model uses a dataset of 205 observations, with 143 cases used for training and 31 examples for testing and validation. The ANN model demonstrated effective training, with negligible errors in estimated error values. The mean squared error values for average temperature and thermal comfort parameters were 0.0342, 0.0376, 0.0571, 0.0029, and 0.2296. The R values for temperature measurements are 0.9947 and 0.9923, 0.9847 and 0.9437, and 0.9737, demonstrating a highly effective engineering method. The ANN model provided precise predictions for temperature and thermal comfort metrics, such as PMV and PPD in a cooling chamber, with a tolerance of ± 15 %. The LM approach, a machine learning methodology, produced excellent outcomes, particularly at lower temperatures, with 15 % of the data exceeding this range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Vortex-enhanced jet impingement and the role of impulse generation rate in heat removal using additively manufactured synthetic jet devices Experimental study and simulation of the rectifier nozzle-type critical distributor applied to the application of row tube plate instant freezer High temperature in-situ 3D monitor of microstructure evolution and heat transfer performance of metal foam Pulverization of municipal solid waste and utilization of pulverized product as alternative fuel for blast furnace injection Flow boiling of HFE-7100 for cooling Multi-Chip modules using manifold microchannels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1