Ke Wang , Zhizeng Pan , Longxiang Yin , Haifeng Zhang , Yuchen Zou , Xionghui Fei
{"title":"电子束辐照聚碳酸酯薄膜的剂量特性研究","authors":"Ke Wang , Zhizeng Pan , Longxiang Yin , Haifeng Zhang , Yuchen Zou , Xionghui Fei","doi":"10.1016/j.radmeas.2024.107333","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the dosimetric characteristics (thickness applicability, dose linear response, signal fading characteristic, in-batch consistency, readout reproducibility, humidity dependence, and electron energy response) of engineering polycarbonate films irradiated by electron beam were studied using spectrophotometry. The results show that polycarbonate films of various thicknesses exhibit good dose linearity within their corresponding wavelength ranges. Specifically, the dose capture range of 0.3 mm polycarbonate film spans from 950 Gy to 1000 kGy. After irradiation, the net absorbance of polycarbonate films showed an exponential decline, which was dose-dependent. The average absolute deviation of net absorbance for polycarbonate films produced within the same batch is 1.49% at 100 kGy. After 15 repeated absorbance measurements, the coefficient of variation in net absorbance for the polycarbonate films is less than 1%. Additionally, the radiation response of the polycarbonate film is affected by the environment relative humidity (during irradiation and post-irradiation storage). At the same dose of 3.5–20 MeV electron beam irradiation, the net absorbance response deviation of polycarbonate films remains below 2.26%. These results provide a comprehensive reference for detecting high doses of electron beams using engineering polycarbonate films.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":"180 ","pages":"Article 107333"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on dosimetric characteristics of polycarbonate films irradiated by electron beam\",\"authors\":\"Ke Wang , Zhizeng Pan , Longxiang Yin , Haifeng Zhang , Yuchen Zou , Xionghui Fei\",\"doi\":\"10.1016/j.radmeas.2024.107333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the dosimetric characteristics (thickness applicability, dose linear response, signal fading characteristic, in-batch consistency, readout reproducibility, humidity dependence, and electron energy response) of engineering polycarbonate films irradiated by electron beam were studied using spectrophotometry. The results show that polycarbonate films of various thicknesses exhibit good dose linearity within their corresponding wavelength ranges. Specifically, the dose capture range of 0.3 mm polycarbonate film spans from 950 Gy to 1000 kGy. After irradiation, the net absorbance of polycarbonate films showed an exponential decline, which was dose-dependent. The average absolute deviation of net absorbance for polycarbonate films produced within the same batch is 1.49% at 100 kGy. After 15 repeated absorbance measurements, the coefficient of variation in net absorbance for the polycarbonate films is less than 1%. Additionally, the radiation response of the polycarbonate film is affected by the environment relative humidity (during irradiation and post-irradiation storage). At the same dose of 3.5–20 MeV electron beam irradiation, the net absorbance response deviation of polycarbonate films remains below 2.26%. These results provide a comprehensive reference for detecting high doses of electron beams using engineering polycarbonate films.</div></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":\"180 \",\"pages\":\"Article 107333\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002816\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002816","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Study on dosimetric characteristics of polycarbonate films irradiated by electron beam
In this study, the dosimetric characteristics (thickness applicability, dose linear response, signal fading characteristic, in-batch consistency, readout reproducibility, humidity dependence, and electron energy response) of engineering polycarbonate films irradiated by electron beam were studied using spectrophotometry. The results show that polycarbonate films of various thicknesses exhibit good dose linearity within their corresponding wavelength ranges. Specifically, the dose capture range of 0.3 mm polycarbonate film spans from 950 Gy to 1000 kGy. After irradiation, the net absorbance of polycarbonate films showed an exponential decline, which was dose-dependent. The average absolute deviation of net absorbance for polycarbonate films produced within the same batch is 1.49% at 100 kGy. After 15 repeated absorbance measurements, the coefficient of variation in net absorbance for the polycarbonate films is less than 1%. Additionally, the radiation response of the polycarbonate film is affected by the environment relative humidity (during irradiation and post-irradiation storage). At the same dose of 3.5–20 MeV electron beam irradiation, the net absorbance response deviation of polycarbonate films remains below 2.26%. These results provide a comprehensive reference for detecting high doses of electron beams using engineering polycarbonate films.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.