采用单值运算的多视角立体网格细化方法

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL ISPRS Journal of Photogrammetry and Remote Sensing Pub Date : 2024-11-12 DOI:10.1016/j.isprsjprs.2024.10.023
Jianchen Liu, Shuang Han, Jin Li
{"title":"采用单值运算的多视角立体网格细化方法","authors":"Jianchen Liu,&nbsp;Shuang Han,&nbsp;Jin Li","doi":"10.1016/j.isprsjprs.2024.10.023","DOIUrl":null,"url":null,"abstract":"<div><div>3D reconstruction is an important part of digital city, high-accuracy 3D modeling method has been widely studied as an important pathway to visualizing 3D city scenes. However, the problems of image resolution, noise, and occlusion result in low quality and smooth features in the mesh model. Therefore, the model needs to be refined to improve the mesh quality and enhance the visual effect. This paper proposes a mesh refinement algorithm to fine-tune the vertices of the mesh and constrain their evolution direction on the normal vector, reducing their freedom degrees to one. The evolution of vertices only involves one motion distance parameter on the normal vector, simplifying the complexity of the energy function derivation. Meanwhile, Gaussian curvature is used as a regularization term, which is anisotropic and preserves the edge features during the reconstruction process. The mesh refinement algorithm with unary operations fully utilizes the original image information and effectively enriches the local detail features of the mesh model. This paper utilizes five public datasets to conduct comparative experiments, and the experimental results show that the proposed algorithm can better restore the detailed features of the model and has a better refinement effect in the same number of iterations compared with OpenMVS library refinement algorithm. At the same time, in the comparison of refinement results with fewer iterations, the algorithm in this paper can achieve more desirable results.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 361-375"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesh refinement method for multi-view stereo with unary operations\",\"authors\":\"Jianchen Liu,&nbsp;Shuang Han,&nbsp;Jin Li\",\"doi\":\"10.1016/j.isprsjprs.2024.10.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D reconstruction is an important part of digital city, high-accuracy 3D modeling method has been widely studied as an important pathway to visualizing 3D city scenes. However, the problems of image resolution, noise, and occlusion result in low quality and smooth features in the mesh model. Therefore, the model needs to be refined to improve the mesh quality and enhance the visual effect. This paper proposes a mesh refinement algorithm to fine-tune the vertices of the mesh and constrain their evolution direction on the normal vector, reducing their freedom degrees to one. The evolution of vertices only involves one motion distance parameter on the normal vector, simplifying the complexity of the energy function derivation. Meanwhile, Gaussian curvature is used as a regularization term, which is anisotropic and preserves the edge features during the reconstruction process. The mesh refinement algorithm with unary operations fully utilizes the original image information and effectively enriches the local detail features of the mesh model. This paper utilizes five public datasets to conduct comparative experiments, and the experimental results show that the proposed algorithm can better restore the detailed features of the model and has a better refinement effect in the same number of iterations compared with OpenMVS library refinement algorithm. At the same time, in the comparison of refinement results with fewer iterations, the algorithm in this paper can achieve more desirable results.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 361-375\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624004003\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004003","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

三维重建是数字城市的重要组成部分,高精度三维建模方法作为可视化三维城市场景的重要途径已被广泛研究。然而,由于图像分辨率、噪声和遮挡等问题,导致网格模型质量不高,特征不平滑。因此,需要对模型进行细化,以提高网格质量,增强视觉效果。本文提出了一种网格细化算法,对网格顶点进行微调,并约束其在法向量上的演化方向,将其自由度降为 1。顶点的演化只涉及法向量上的一个运动距离参数,简化了能量函数推导的复杂性。同时,高斯曲率被用作正则化项,它是各向异性的,在重建过程中能保留边缘特征。采用单值运算的网格细化算法充分利用了原始图像信息,有效地丰富了网格模型的局部细节特征。本文利用五个公开数据集进行了对比实验,实验结果表明,与 OpenMVS 库细化算法相比,在相同的迭代次数下,本文提出的算法能更好地还原模型的细节特征,细化效果更好。同时,在迭代次数较少的细化结果对比中,本文算法能取得更理想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesh refinement method for multi-view stereo with unary operations
3D reconstruction is an important part of digital city, high-accuracy 3D modeling method has been widely studied as an important pathway to visualizing 3D city scenes. However, the problems of image resolution, noise, and occlusion result in low quality and smooth features in the mesh model. Therefore, the model needs to be refined to improve the mesh quality and enhance the visual effect. This paper proposes a mesh refinement algorithm to fine-tune the vertices of the mesh and constrain their evolution direction on the normal vector, reducing their freedom degrees to one. The evolution of vertices only involves one motion distance parameter on the normal vector, simplifying the complexity of the energy function derivation. Meanwhile, Gaussian curvature is used as a regularization term, which is anisotropic and preserves the edge features during the reconstruction process. The mesh refinement algorithm with unary operations fully utilizes the original image information and effectively enriches the local detail features of the mesh model. This paper utilizes five public datasets to conduct comparative experiments, and the experimental results show that the proposed algorithm can better restore the detailed features of the model and has a better refinement effect in the same number of iterations compared with OpenMVS library refinement algorithm. At the same time, in the comparison of refinement results with fewer iterations, the algorithm in this paper can achieve more desirable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
期刊最新文献
Optimizing hybrid models for canopy nitrogen mapping from Sentinel-2 in Google Earth Engine A unique dielectric constant estimation for lunar surface through PolSAR model-based decomposition Unwrap-Net: A deep neural network-based InSAR phase unwrapping method assisted by airborne LiDAR data METNet: A mesh exploring approach for segmenting 3D textured urban scenes On-orbit geometric calibration of MERSI whiskbroom scanner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1