Murali Gedda , Haomin Song , Anil Reddy Pininti , Omar Alkhazragi , Hendrik Faber , Xiaoguang Tu , Husam N. Alshareef , Stefaan De Wolf , Boon S. Ooi , Thomas D. Anthopoulos , Qiaoqiang Gan
{"title":"通过平面纳米空腔工程实现具有超强环境稳定性的高速、自供电二维透镜光电探测器","authors":"Murali Gedda , Haomin Song , Anil Reddy Pininti , Omar Alkhazragi , Hendrik Faber , Xiaoguang Tu , Husam N. Alshareef , Stefaan De Wolf , Boon S. Ooi , Thomas D. Anthopoulos , Qiaoqiang Gan","doi":"10.1016/j.mser.2024.100885","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in photodetector (PD) technology are pivotal for the evolution of optical communication and imaging systems. Addressing the demands of these applications necessitates PDs that can deliver both high-speed response and high sensitivity. In this context, we introduce an innovative high-speed PD design utilizing ultrathin two-dimensional metal halide perovskites (2D-MHP), coupled with a planar nanocavity to significantly enhance optical absorptance—achieving more than a fourfold increase in a solution-processed 10-nm-thick 2D-MHP film. This integration facilitates an exceptional response time (30 ns) alongside a high responsivity of 2.12 A W<sup>−1</sup>. Our method overcomes traditional constraints related to thickness and absorption, thereby optimizing device speed and dark noise features through active area variation. Intriguingly, the nanocavity architecture provided a unique protection of 2D-MHP layers, realizing remarkable operational and environmental stability: our devices maintain performance integrity for over 150 days. Notably, our best-performing cavity-enhanced devices exhibit the capability to establish an optical wireless communication link, achieving a data transmission rate of 20 Mbps. This approach effectively tackles the challenges posed by the low absorption of ultrathin layers, heralding a new era for applications in imaging, optical communication systems, and more.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"162 ","pages":"Article 100885"},"PeriodicalIF":31.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed, self-powered 2D-perovskite photodetectors with exceptional ambient stability enabled by planar nanocavity engineering\",\"authors\":\"Murali Gedda , Haomin Song , Anil Reddy Pininti , Omar Alkhazragi , Hendrik Faber , Xiaoguang Tu , Husam N. Alshareef , Stefaan De Wolf , Boon S. Ooi , Thomas D. Anthopoulos , Qiaoqiang Gan\",\"doi\":\"10.1016/j.mser.2024.100885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in photodetector (PD) technology are pivotal for the evolution of optical communication and imaging systems. Addressing the demands of these applications necessitates PDs that can deliver both high-speed response and high sensitivity. In this context, we introduce an innovative high-speed PD design utilizing ultrathin two-dimensional metal halide perovskites (2D-MHP), coupled with a planar nanocavity to significantly enhance optical absorptance—achieving more than a fourfold increase in a solution-processed 10-nm-thick 2D-MHP film. This integration facilitates an exceptional response time (30 ns) alongside a high responsivity of 2.12 A W<sup>−1</sup>. Our method overcomes traditional constraints related to thickness and absorption, thereby optimizing device speed and dark noise features through active area variation. Intriguingly, the nanocavity architecture provided a unique protection of 2D-MHP layers, realizing remarkable operational and environmental stability: our devices maintain performance integrity for over 150 days. Notably, our best-performing cavity-enhanced devices exhibit the capability to establish an optical wireless communication link, achieving a data transmission rate of 20 Mbps. This approach effectively tackles the challenges posed by the low absorption of ultrathin layers, heralding a new era for applications in imaging, optical communication systems, and more.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"162 \",\"pages\":\"Article 100885\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24001153\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24001153","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-speed, self-powered 2D-perovskite photodetectors with exceptional ambient stability enabled by planar nanocavity engineering
Advancements in photodetector (PD) technology are pivotal for the evolution of optical communication and imaging systems. Addressing the demands of these applications necessitates PDs that can deliver both high-speed response and high sensitivity. In this context, we introduce an innovative high-speed PD design utilizing ultrathin two-dimensional metal halide perovskites (2D-MHP), coupled with a planar nanocavity to significantly enhance optical absorptance—achieving more than a fourfold increase in a solution-processed 10-nm-thick 2D-MHP film. This integration facilitates an exceptional response time (30 ns) alongside a high responsivity of 2.12 A W−1. Our method overcomes traditional constraints related to thickness and absorption, thereby optimizing device speed and dark noise features through active area variation. Intriguingly, the nanocavity architecture provided a unique protection of 2D-MHP layers, realizing remarkable operational and environmental stability: our devices maintain performance integrity for over 150 days. Notably, our best-performing cavity-enhanced devices exhibit the capability to establish an optical wireless communication link, achieving a data transmission rate of 20 Mbps. This approach effectively tackles the challenges posed by the low absorption of ultrathin layers, heralding a new era for applications in imaging, optical communication systems, and more.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.