Dongliang Wang , Yun Du , Zuwei Liao , Xiaodong Hong , Shilong Zhang
{"title":"液相二氧化碳加氢合成甲醇:溶剂筛选、工艺设计和技术经济评估","authors":"Dongliang Wang , Yun Du , Zuwei Liao , Xiaodong Hong , Shilong Zhang","doi":"10.1016/j.jcou.2024.102976","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on a liquid-phase CO<sub>2</sub> hydrogenation process for methanol synthesis to enhance CO<sub>2</sub> conversion. The feasibility of a liquid-phase CO<sub>2</sub> hydrogenation process is comprehensively evaluated through a techno-economic analysis. The solvent tetraethylene glycol dimethyl ether is identified as one of the most favorable options following an analysis of the solubility data pertaining to various solvents and their influence on the reaction equilibrium of the substances within the system. The influence of process parameters, including temperature, pressure, solvent amount, and gas hourly space velocity (GHSV), on the conversion of CO<sub>2</sub> and the selectivity for methanol is examined and optimized in a liquid-phase CO<sub>2</sub> hydrogenation to methanol process without a gas recycle (Process 1), optimal reaction conditions are determined and a CO<sub>2</sub> conversion of 95.19 % and a CH<sub>3</sub>OH yield of 94.77 % with a purity of 99.9 % are achieved. A liquid-phase process with a gas recycle (Process 2) is implemented to enhance the utilization of feed gas, achieving a CO<sub>2</sub> conversion rate of 95.23 % and a methanol yield of 99.69 %. The liquid-phase process is further optimized by incorporating reactive distillation technology (Process 3), to enhance reaction efficiency and reduce energy consumption. Following the techno-economic evaluation, the energy efficiency of Process 3 is 7.79 % and 4.99 % higher than that of Process 1 and Process 2, respectively. The product cost of Process 3 is reduced by 8.75 % compared to Process 1 and by 4.25 % compared to Process 2. This research offers insights into the challenges associated with the development of the liquid-phase method.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"90 ","pages":"Article 102976"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-phase CO2 hydrogenation to methanol synthesis: Solvent screening, process design and techno-economic evaluation\",\"authors\":\"Dongliang Wang , Yun Du , Zuwei Liao , Xiaodong Hong , Shilong Zhang\",\"doi\":\"10.1016/j.jcou.2024.102976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on a liquid-phase CO<sub>2</sub> hydrogenation process for methanol synthesis to enhance CO<sub>2</sub> conversion. The feasibility of a liquid-phase CO<sub>2</sub> hydrogenation process is comprehensively evaluated through a techno-economic analysis. The solvent tetraethylene glycol dimethyl ether is identified as one of the most favorable options following an analysis of the solubility data pertaining to various solvents and their influence on the reaction equilibrium of the substances within the system. The influence of process parameters, including temperature, pressure, solvent amount, and gas hourly space velocity (GHSV), on the conversion of CO<sub>2</sub> and the selectivity for methanol is examined and optimized in a liquid-phase CO<sub>2</sub> hydrogenation to methanol process without a gas recycle (Process 1), optimal reaction conditions are determined and a CO<sub>2</sub> conversion of 95.19 % and a CH<sub>3</sub>OH yield of 94.77 % with a purity of 99.9 % are achieved. A liquid-phase process with a gas recycle (Process 2) is implemented to enhance the utilization of feed gas, achieving a CO<sub>2</sub> conversion rate of 95.23 % and a methanol yield of 99.69 %. The liquid-phase process is further optimized by incorporating reactive distillation technology (Process 3), to enhance reaction efficiency and reduce energy consumption. Following the techno-economic evaluation, the energy efficiency of Process 3 is 7.79 % and 4.99 % higher than that of Process 1 and Process 2, respectively. The product cost of Process 3 is reduced by 8.75 % compared to Process 1 and by 4.25 % compared to Process 2. This research offers insights into the challenges associated with the development of the liquid-phase method.</div></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"90 \",\"pages\":\"Article 102976\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024003111\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024003111","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Liquid-phase CO2 hydrogenation to methanol synthesis: Solvent screening, process design and techno-economic evaluation
This paper focuses on a liquid-phase CO2 hydrogenation process for methanol synthesis to enhance CO2 conversion. The feasibility of a liquid-phase CO2 hydrogenation process is comprehensively evaluated through a techno-economic analysis. The solvent tetraethylene glycol dimethyl ether is identified as one of the most favorable options following an analysis of the solubility data pertaining to various solvents and their influence on the reaction equilibrium of the substances within the system. The influence of process parameters, including temperature, pressure, solvent amount, and gas hourly space velocity (GHSV), on the conversion of CO2 and the selectivity for methanol is examined and optimized in a liquid-phase CO2 hydrogenation to methanol process without a gas recycle (Process 1), optimal reaction conditions are determined and a CO2 conversion of 95.19 % and a CH3OH yield of 94.77 % with a purity of 99.9 % are achieved. A liquid-phase process with a gas recycle (Process 2) is implemented to enhance the utilization of feed gas, achieving a CO2 conversion rate of 95.23 % and a methanol yield of 99.69 %. The liquid-phase process is further optimized by incorporating reactive distillation technology (Process 3), to enhance reaction efficiency and reduce energy consumption. Following the techno-economic evaluation, the energy efficiency of Process 3 is 7.79 % and 4.99 % higher than that of Process 1 and Process 2, respectively. The product cost of Process 3 is reduced by 8.75 % compared to Process 1 and by 4.25 % compared to Process 2. This research offers insights into the challenges associated with the development of the liquid-phase method.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.