Zhiguo Su , April Z. Gu , Donghui Wen , Feifei Li , Bei Huang , Qinglin Mu , Lyujun Chen
{"title":"通过预筛选类似 ARG 的读数快速识别抗生素耐药基因宿主","authors":"Zhiguo Su , April Z. Gu , Donghui Wen , Feifei Li , Bei Huang , Qinglin Mu , Lyujun Chen","doi":"10.1016/j.ese.2024.100502","DOIUrl":null,"url":null,"abstract":"<div><div>Effective risk assessment and control of environmental antibiotic resistance depend on comprehensive information about antibiotic resistance genes (ARGs) and their microbial hosts. Advances in sequencing technologies and bioinformatics have enabled the identification of ARG hosts using metagenome-assembled contigs and genomes. However, these approaches often suffer from information loss and require extensive computational resources. Here we introduce a bioinformatic strategy that identifies ARG hosts by prescreening ARG-like reads (ALRs) directly from total metagenomic datasets. This ALR-based method offers several advantages: (1) it enables the detection of low-abundance ARG hosts with higher accuracy in complex environments; (2) it establishes a direct relationship between the abundance of ARGs and their hosts; and (3) it reduces computation time by approximately 44–96% compared to strategies relying on assembled contigs and genomes. We applied our ALR-based strategy alongside two traditional methods to investigate a typical human-impacted environment. The results were consistent across all methods, revealing that ARGs are predominantly carried by Gammaproteobacteria and Bacilli, and their distribution patterns may indicate the impact of wastewater discharge on coastal resistome. Our strategy provides rapid and accurate identification of antibiotic-resistant bacteria, offering valuable insights for the high-throughput surveillance of environmental antibiotic resistance. This study further expands our knowledge of ARG-related risk management in future.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"Article 100502"},"PeriodicalIF":14.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid identification of antibiotic resistance gene hosts by prescreening ARG-like reads\",\"authors\":\"Zhiguo Su , April Z. Gu , Donghui Wen , Feifei Li , Bei Huang , Qinglin Mu , Lyujun Chen\",\"doi\":\"10.1016/j.ese.2024.100502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective risk assessment and control of environmental antibiotic resistance depend on comprehensive information about antibiotic resistance genes (ARGs) and their microbial hosts. Advances in sequencing technologies and bioinformatics have enabled the identification of ARG hosts using metagenome-assembled contigs and genomes. However, these approaches often suffer from information loss and require extensive computational resources. Here we introduce a bioinformatic strategy that identifies ARG hosts by prescreening ARG-like reads (ALRs) directly from total metagenomic datasets. This ALR-based method offers several advantages: (1) it enables the detection of low-abundance ARG hosts with higher accuracy in complex environments; (2) it establishes a direct relationship between the abundance of ARGs and their hosts; and (3) it reduces computation time by approximately 44–96% compared to strategies relying on assembled contigs and genomes. We applied our ALR-based strategy alongside two traditional methods to investigate a typical human-impacted environment. The results were consistent across all methods, revealing that ARGs are predominantly carried by Gammaproteobacteria and Bacilli, and their distribution patterns may indicate the impact of wastewater discharge on coastal resistome. Our strategy provides rapid and accurate identification of antibiotic-resistant bacteria, offering valuable insights for the high-throughput surveillance of environmental antibiotic resistance. This study further expands our knowledge of ARG-related risk management in future.</div></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"23 \",\"pages\":\"Article 100502\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424001169\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424001169","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Rapid identification of antibiotic resistance gene hosts by prescreening ARG-like reads
Effective risk assessment and control of environmental antibiotic resistance depend on comprehensive information about antibiotic resistance genes (ARGs) and their microbial hosts. Advances in sequencing technologies and bioinformatics have enabled the identification of ARG hosts using metagenome-assembled contigs and genomes. However, these approaches often suffer from information loss and require extensive computational resources. Here we introduce a bioinformatic strategy that identifies ARG hosts by prescreening ARG-like reads (ALRs) directly from total metagenomic datasets. This ALR-based method offers several advantages: (1) it enables the detection of low-abundance ARG hosts with higher accuracy in complex environments; (2) it establishes a direct relationship between the abundance of ARGs and their hosts; and (3) it reduces computation time by approximately 44–96% compared to strategies relying on assembled contigs and genomes. We applied our ALR-based strategy alongside two traditional methods to investigate a typical human-impacted environment. The results were consistent across all methods, revealing that ARGs are predominantly carried by Gammaproteobacteria and Bacilli, and their distribution patterns may indicate the impact of wastewater discharge on coastal resistome. Our strategy provides rapid and accurate identification of antibiotic-resistant bacteria, offering valuable insights for the high-throughput surveillance of environmental antibiotic resistance. This study further expands our knowledge of ARG-related risk management in future.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.