Eder Amayuelas , Sandeep Kumar Sharma , Jaideep Mor , Luis Bartolomé , Liam J.W. Johnson , Davide Caporale , Andrea Le Donne , Gianmarco Sigolo , Łukasz Scheller , Viviana Cristiglio , Pawel Zajdel , Simone Meloni , Yaroslav Grosu
{"title":"连接体杂化对疏水性金属有机框架润湿性的影响","authors":"Eder Amayuelas , Sandeep Kumar Sharma , Jaideep Mor , Luis Bartolomé , Liam J.W. Johnson , Davide Caporale , Andrea Le Donne , Gianmarco Sigolo , Łukasz Scheller , Viviana Cristiglio , Pawel Zajdel , Simone Meloni , Yaroslav Grosu","doi":"10.1016/j.micromeso.2024.113423","DOIUrl":null,"url":null,"abstract":"<div><div>Wetting-dewetting of nanoporous materials is of key importance for a wide range of natural and technological cases, which include separation, chromatography, ionic channels. Heterogeneous lyophobic systems (HLS) consisting of a lyophobic nanoporous material and a non-wetting liquid are attractive for thermomechanical energy storage, conversion and dissipation under pressure/temperature variations. In recent years, metal-organic frameworks (MOFs) are entering many fields, including those mentioned above due to their wide structural diversity, structural flexibility and high tunability. In this work, we investigate the hitherto unexplored effects of forced wetting (intrusion-extrusion) of a hybrid mixed-linker ZIF-7-8 MOF (Zn-methylimidazole<sub>0.794</sub>–benzimidazole<sub>0.206</sub>) with water. Surprisingly, despite its structural similarity to ZIF-8, the hybrid ZIF-7-8 MOF demonstrates a non-hysteretic water intrusion-extrusion cycle that is in strong contrast to both ZIF-8 and ZIF-7 MOFs, which have pronounced intrusion-extrusion hysteresis. We used a combination of high-pressure intrusion-extrusion experiments, neutron diffraction structural analysis and atomistic simulations to put forward several hypotheses regarding the observed transformation from shock absorber/bumper behavior of ZIF-8 and ZIF-7 to molecular spring behavior of hybrid ZIF-7-8. These results open a new route for tuning the intrusion-extrusion (wetting-dewetting) hysteresis for numerous applications.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113423"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks\",\"authors\":\"Eder Amayuelas , Sandeep Kumar Sharma , Jaideep Mor , Luis Bartolomé , Liam J.W. Johnson , Davide Caporale , Andrea Le Donne , Gianmarco Sigolo , Łukasz Scheller , Viviana Cristiglio , Pawel Zajdel , Simone Meloni , Yaroslav Grosu\",\"doi\":\"10.1016/j.micromeso.2024.113423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wetting-dewetting of nanoporous materials is of key importance for a wide range of natural and technological cases, which include separation, chromatography, ionic channels. Heterogeneous lyophobic systems (HLS) consisting of a lyophobic nanoporous material and a non-wetting liquid are attractive for thermomechanical energy storage, conversion and dissipation under pressure/temperature variations. In recent years, metal-organic frameworks (MOFs) are entering many fields, including those mentioned above due to their wide structural diversity, structural flexibility and high tunability. In this work, we investigate the hitherto unexplored effects of forced wetting (intrusion-extrusion) of a hybrid mixed-linker ZIF-7-8 MOF (Zn-methylimidazole<sub>0.794</sub>–benzimidazole<sub>0.206</sub>) with water. Surprisingly, despite its structural similarity to ZIF-8, the hybrid ZIF-7-8 MOF demonstrates a non-hysteretic water intrusion-extrusion cycle that is in strong contrast to both ZIF-8 and ZIF-7 MOFs, which have pronounced intrusion-extrusion hysteresis. We used a combination of high-pressure intrusion-extrusion experiments, neutron diffraction structural analysis and atomistic simulations to put forward several hypotheses regarding the observed transformation from shock absorber/bumper behavior of ZIF-8 and ZIF-7 to molecular spring behavior of hybrid ZIF-7-8. These results open a new route for tuning the intrusion-extrusion (wetting-dewetting) hysteresis for numerous applications.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"383 \",\"pages\":\"Article 113423\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124004451\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004451","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks
Wetting-dewetting of nanoporous materials is of key importance for a wide range of natural and technological cases, which include separation, chromatography, ionic channels. Heterogeneous lyophobic systems (HLS) consisting of a lyophobic nanoporous material and a non-wetting liquid are attractive for thermomechanical energy storage, conversion and dissipation under pressure/temperature variations. In recent years, metal-organic frameworks (MOFs) are entering many fields, including those mentioned above due to their wide structural diversity, structural flexibility and high tunability. In this work, we investigate the hitherto unexplored effects of forced wetting (intrusion-extrusion) of a hybrid mixed-linker ZIF-7-8 MOF (Zn-methylimidazole0.794–benzimidazole0.206) with water. Surprisingly, despite its structural similarity to ZIF-8, the hybrid ZIF-7-8 MOF demonstrates a non-hysteretic water intrusion-extrusion cycle that is in strong contrast to both ZIF-8 and ZIF-7 MOFs, which have pronounced intrusion-extrusion hysteresis. We used a combination of high-pressure intrusion-extrusion experiments, neutron diffraction structural analysis and atomistic simulations to put forward several hypotheses regarding the observed transformation from shock absorber/bumper behavior of ZIF-8 and ZIF-7 to molecular spring behavior of hybrid ZIF-7-8. These results open a new route for tuning the intrusion-extrusion (wetting-dewetting) hysteresis for numerous applications.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.