Ziheng Shen , Alexander I. Wiechert , Seungrag Choi , Austin P. Ladshaw , Lawrence L. Tavlarides , Costas Tsouris , Sotira Yiacoumi
{"title":"高温和氧气对银功能化二氧化硅气凝胶捕获放射性碘的影响","authors":"Ziheng Shen , Alexander I. Wiechert , Seungrag Choi , Austin P. Ladshaw , Lawrence L. Tavlarides , Costas Tsouris , Sotira Yiacoumi","doi":"10.1016/j.micromeso.2024.113412","DOIUrl":null,"url":null,"abstract":"<div><div>Reprocessing is considered a competent strategy for spent nuclear fuel management, yet radioiodine (<sup>129</sup>I) is emitted in reprocessing off-gas as a hazardous byproduct. Silver functionalized silica aerogel (Ag<sup>0</sup>-aerogel), a promising iodine capture material, experiences a reduction in its capacity after prolonged exposure to off-gas components at elevated temperatures, a phenomenon termed as aging. To fully understand this process, we isolated the contribution of each aging factor, exposing Ag<sup>0</sup>-aerogel samples to N<sub>2</sub> and dry air gas streams, respectively, at 150 °C for different time periods. Aged samples were loaded with I<sub>2</sub> to examine the capacity change and comprehensively characterized to investigate the evolution of their properties. Results show that temperature alone did not alter Ag<sup>0</sup>-aerogel's capacity but triggered Ag<sup>0</sup> nanoparticles sintering and generated organic sulfur species. The presence of O<sub>2</sub> reduced the capacity by ∼20 %, causing (i) formation of silver sulfide (Ag<sub>2</sub>S) crystals and (ii) oxidation of Ag-thiolate (Ag-S-r) to Ag sulfonate (Ag-SO<sub>3</sub>-r). Given that Ag<sub>2</sub>S readily adsorbs I<sub>2</sub>, the formation of Ag-SO<sub>3</sub>-r is the major inhibitor for iodine adsorption. This hypothesis was supported by density functional theory (DFT) simulations. These findings unraveled key mechanisms of Ag<sup>0</sup>-aerogel aging, which are useful in the development of materials that withstand realistic spent-nuclear-fuel-reprocessing off-gas conditions.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113412"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of elevated temperature and oxygen on the capture of radioactive iodine by silver functionalized silica aerogel\",\"authors\":\"Ziheng Shen , Alexander I. Wiechert , Seungrag Choi , Austin P. Ladshaw , Lawrence L. Tavlarides , Costas Tsouris , Sotira Yiacoumi\",\"doi\":\"10.1016/j.micromeso.2024.113412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reprocessing is considered a competent strategy for spent nuclear fuel management, yet radioiodine (<sup>129</sup>I) is emitted in reprocessing off-gas as a hazardous byproduct. Silver functionalized silica aerogel (Ag<sup>0</sup>-aerogel), a promising iodine capture material, experiences a reduction in its capacity after prolonged exposure to off-gas components at elevated temperatures, a phenomenon termed as aging. To fully understand this process, we isolated the contribution of each aging factor, exposing Ag<sup>0</sup>-aerogel samples to N<sub>2</sub> and dry air gas streams, respectively, at 150 °C for different time periods. Aged samples were loaded with I<sub>2</sub> to examine the capacity change and comprehensively characterized to investigate the evolution of their properties. Results show that temperature alone did not alter Ag<sup>0</sup>-aerogel's capacity but triggered Ag<sup>0</sup> nanoparticles sintering and generated organic sulfur species. The presence of O<sub>2</sub> reduced the capacity by ∼20 %, causing (i) formation of silver sulfide (Ag<sub>2</sub>S) crystals and (ii) oxidation of Ag-thiolate (Ag-S-r) to Ag sulfonate (Ag-SO<sub>3</sub>-r). Given that Ag<sub>2</sub>S readily adsorbs I<sub>2</sub>, the formation of Ag-SO<sub>3</sub>-r is the major inhibitor for iodine adsorption. This hypothesis was supported by density functional theory (DFT) simulations. These findings unraveled key mechanisms of Ag<sup>0</sup>-aerogel aging, which are useful in the development of materials that withstand realistic spent-nuclear-fuel-reprocessing off-gas conditions.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"383 \",\"pages\":\"Article 113412\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124004347\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004347","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Influence of elevated temperature and oxygen on the capture of radioactive iodine by silver functionalized silica aerogel
Reprocessing is considered a competent strategy for spent nuclear fuel management, yet radioiodine (129I) is emitted in reprocessing off-gas as a hazardous byproduct. Silver functionalized silica aerogel (Ag0-aerogel), a promising iodine capture material, experiences a reduction in its capacity after prolonged exposure to off-gas components at elevated temperatures, a phenomenon termed as aging. To fully understand this process, we isolated the contribution of each aging factor, exposing Ag0-aerogel samples to N2 and dry air gas streams, respectively, at 150 °C for different time periods. Aged samples were loaded with I2 to examine the capacity change and comprehensively characterized to investigate the evolution of their properties. Results show that temperature alone did not alter Ag0-aerogel's capacity but triggered Ag0 nanoparticles sintering and generated organic sulfur species. The presence of O2 reduced the capacity by ∼20 %, causing (i) formation of silver sulfide (Ag2S) crystals and (ii) oxidation of Ag-thiolate (Ag-S-r) to Ag sulfonate (Ag-SO3-r). Given that Ag2S readily adsorbs I2, the formation of Ag-SO3-r is the major inhibitor for iodine adsorption. This hypothesis was supported by density functional theory (DFT) simulations. These findings unraveled key mechanisms of Ag0-aerogel aging, which are useful in the development of materials that withstand realistic spent-nuclear-fuel-reprocessing off-gas conditions.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.