{"title":"用于海水淡化的共价有机框架多层膜的快速热渗流","authors":"Xin Zhang , Yong Pan , Mingjie Wei","doi":"10.1016/j.desal.2024.118276","DOIUrl":null,"url":null,"abstract":"<div><div>Thermo-osmosis, a liquid flow driven by temperature difference (∆<em>T</em>) in a solid-liquid interface, is promising to utilize low-grade heat energies for water desalination. However, the water flux of thermo-osmosis is hard to be enhanced. Herein, the potential of COF multilayers for thermo-osmotic desalination is investigated via non-equilibrium molecular dynamics (NEMD) simulations. To this end, TpMA multilayers with fine water stability and sub-nanometer pores are selected. The TpMA multilayers show excellent water flux and nearly 100 % NaCl rejections. By the analysis of interfacial and interior resistances, it is extrapolated that the TpMA nanosheet with a thickness of 200 nm has a water flux of 3096 L/(m<sup>2</sup>·h) at the ∆<em>T</em> of 60 K. By the molecular-level analysis, it is revealed that the coexistence of single-file and two-chains of water structure in the flow direction brings in high thermo-osmotic flows. The high NaCl rejection is due to the strong sieving effect of pores on the hydration of Cl<sup>−</sup>. Finally, the thermo-osmosis is compared with reverse osmosis. Based on the resistance analysis, it is found that the ∆<em>T</em> of 60 K is equivalent to the ∆<em>P</em> of 180 bar at most to reach the same water flux. These findings will inspire researchers with an alternative technology for high-efficiency desalination using low-grade heat energies.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118276"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast thermo-osmotic flow through covalent organic framework multilayers for desalination\",\"authors\":\"Xin Zhang , Yong Pan , Mingjie Wei\",\"doi\":\"10.1016/j.desal.2024.118276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermo-osmosis, a liquid flow driven by temperature difference (∆<em>T</em>) in a solid-liquid interface, is promising to utilize low-grade heat energies for water desalination. However, the water flux of thermo-osmosis is hard to be enhanced. Herein, the potential of COF multilayers for thermo-osmotic desalination is investigated via non-equilibrium molecular dynamics (NEMD) simulations. To this end, TpMA multilayers with fine water stability and sub-nanometer pores are selected. The TpMA multilayers show excellent water flux and nearly 100 % NaCl rejections. By the analysis of interfacial and interior resistances, it is extrapolated that the TpMA nanosheet with a thickness of 200 nm has a water flux of 3096 L/(m<sup>2</sup>·h) at the ∆<em>T</em> of 60 K. By the molecular-level analysis, it is revealed that the coexistence of single-file and two-chains of water structure in the flow direction brings in high thermo-osmotic flows. The high NaCl rejection is due to the strong sieving effect of pores on the hydration of Cl<sup>−</sup>. Finally, the thermo-osmosis is compared with reverse osmosis. Based on the resistance analysis, it is found that the ∆<em>T</em> of 60 K is equivalent to the ∆<em>P</em> of 180 bar at most to reach the same water flux. These findings will inspire researchers with an alternative technology for high-efficiency desalination using low-grade heat energies.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"594 \",\"pages\":\"Article 118276\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009871\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009871","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fast thermo-osmotic flow through covalent organic framework multilayers for desalination
Thermo-osmosis, a liquid flow driven by temperature difference (∆T) in a solid-liquid interface, is promising to utilize low-grade heat energies for water desalination. However, the water flux of thermo-osmosis is hard to be enhanced. Herein, the potential of COF multilayers for thermo-osmotic desalination is investigated via non-equilibrium molecular dynamics (NEMD) simulations. To this end, TpMA multilayers with fine water stability and sub-nanometer pores are selected. The TpMA multilayers show excellent water flux and nearly 100 % NaCl rejections. By the analysis of interfacial and interior resistances, it is extrapolated that the TpMA nanosheet with a thickness of 200 nm has a water flux of 3096 L/(m2·h) at the ∆T of 60 K. By the molecular-level analysis, it is revealed that the coexistence of single-file and two-chains of water structure in the flow direction brings in high thermo-osmotic flows. The high NaCl rejection is due to the strong sieving effect of pores on the hydration of Cl−. Finally, the thermo-osmosis is compared with reverse osmosis. Based on the resistance analysis, it is found that the ∆T of 60 K is equivalent to the ∆P of 180 bar at most to reach the same water flux. These findings will inspire researchers with an alternative technology for high-efficiency desalination using low-grade heat energies.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.