Chunming Feng , Xiaobing Pan , Xiaocheng Lin , Yi Yang , Fuqiang Fan , Chenxiao Jiang , Ying Mei
{"title":"利用 La 基 LDH 复合电极的电容式去离子技术,实现高效节能和选择性去除磷酸盐","authors":"Chunming Feng , Xiaobing Pan , Xiaocheng Lin , Yi Yang , Fuqiang Fan , Chenxiao Jiang , Ying Mei","doi":"10.1016/j.desal.2024.118259","DOIUrl":null,"url":null,"abstract":"<div><div>Capacitive deionization (CDI) is a promising technology for removing phosphate from wastewater. Its practical implementation is however hindered by the constraints on the electrode materials. To boost the adsorption capacity, phosphate selectivity, and cost-effectiveness of the electrode, this study proposed a composite electrode blending Lanthanum-based layered double hydroxide (Ca-La LDH) and activated carbon (AC). It capitalizes on the synergistic effects of electric double layer capacitance (EDLC) of AC and the diffusion-controlled charge storage (pseudocapacitive behavior) of Ca-La LDH. By optimizing the mass ratios of the constituents and the electrode material loading capacities, the composite electrode AC/Ca-La LDH-50<sub>20</sub> was developed, which contains 20 mg of 50 wt% Ca-La LDH. This composition achieved a remarkable phosphate adsorption capacity of 34.8 mg P /g and a low energy consumption of 0.0051 kWh/g P in constant voltage (CV) mode. It represented a 241 % increase in adsorption capacity (mg P/g) and 71 % decrease in specific energy consumption (kWh/g P) compared to the electrode made solely of AC. Particularly the moderate inclusion of Lanthanum contributes to its cost-effectiveness. Moreover, further studies extensively examined the impacts of electrical driving force, including applied voltage in constant voltage (CV) mode and applied current in constant current (CC) mode, on the phosphate removal efficiency. The composite electrode remained stable performance with the presence of the high content of coexisting anions (e.g.,Cl<sup>−</sup>,SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>), obtaining high selectivity coefficient of phosphate over other anions. This study highlighted the practical potential of AC/Ca-La LDH composite electrode for advancing CDI technology for phosphate removal in an efficient, energy-saving and cost-effective manner.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118259"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitive deionization exploiting La-based LDH composite electrode toward energy efficient and selective removal of phosphate\",\"authors\":\"Chunming Feng , Xiaobing Pan , Xiaocheng Lin , Yi Yang , Fuqiang Fan , Chenxiao Jiang , Ying Mei\",\"doi\":\"10.1016/j.desal.2024.118259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Capacitive deionization (CDI) is a promising technology for removing phosphate from wastewater. Its practical implementation is however hindered by the constraints on the electrode materials. To boost the adsorption capacity, phosphate selectivity, and cost-effectiveness of the electrode, this study proposed a composite electrode blending Lanthanum-based layered double hydroxide (Ca-La LDH) and activated carbon (AC). It capitalizes on the synergistic effects of electric double layer capacitance (EDLC) of AC and the diffusion-controlled charge storage (pseudocapacitive behavior) of Ca-La LDH. By optimizing the mass ratios of the constituents and the electrode material loading capacities, the composite electrode AC/Ca-La LDH-50<sub>20</sub> was developed, which contains 20 mg of 50 wt% Ca-La LDH. This composition achieved a remarkable phosphate adsorption capacity of 34.8 mg P /g and a low energy consumption of 0.0051 kWh/g P in constant voltage (CV) mode. It represented a 241 % increase in adsorption capacity (mg P/g) and 71 % decrease in specific energy consumption (kWh/g P) compared to the electrode made solely of AC. Particularly the moderate inclusion of Lanthanum contributes to its cost-effectiveness. Moreover, further studies extensively examined the impacts of electrical driving force, including applied voltage in constant voltage (CV) mode and applied current in constant current (CC) mode, on the phosphate removal efficiency. The composite electrode remained stable performance with the presence of the high content of coexisting anions (e.g.,Cl<sup>−</sup>,SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>), obtaining high selectivity coefficient of phosphate over other anions. This study highlighted the practical potential of AC/Ca-La LDH composite electrode for advancing CDI technology for phosphate removal in an efficient, energy-saving and cost-effective manner.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"594 \",\"pages\":\"Article 118259\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009706\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009706","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Capacitive deionization exploiting La-based LDH composite electrode toward energy efficient and selective removal of phosphate
Capacitive deionization (CDI) is a promising technology for removing phosphate from wastewater. Its practical implementation is however hindered by the constraints on the electrode materials. To boost the adsorption capacity, phosphate selectivity, and cost-effectiveness of the electrode, this study proposed a composite electrode blending Lanthanum-based layered double hydroxide (Ca-La LDH) and activated carbon (AC). It capitalizes on the synergistic effects of electric double layer capacitance (EDLC) of AC and the diffusion-controlled charge storage (pseudocapacitive behavior) of Ca-La LDH. By optimizing the mass ratios of the constituents and the electrode material loading capacities, the composite electrode AC/Ca-La LDH-5020 was developed, which contains 20 mg of 50 wt% Ca-La LDH. This composition achieved a remarkable phosphate adsorption capacity of 34.8 mg P /g and a low energy consumption of 0.0051 kWh/g P in constant voltage (CV) mode. It represented a 241 % increase in adsorption capacity (mg P/g) and 71 % decrease in specific energy consumption (kWh/g P) compared to the electrode made solely of AC. Particularly the moderate inclusion of Lanthanum contributes to its cost-effectiveness. Moreover, further studies extensively examined the impacts of electrical driving force, including applied voltage in constant voltage (CV) mode and applied current in constant current (CC) mode, on the phosphate removal efficiency. The composite electrode remained stable performance with the presence of the high content of coexisting anions (e.g.,Cl−,SO42−, HCO3−, NO3−), obtaining high selectivity coefficient of phosphate over other anions. This study highlighted the practical potential of AC/Ca-La LDH composite electrode for advancing CDI technology for phosphate removal in an efficient, energy-saving and cost-effective manner.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.