{"title":"基于镍(II)和钴(II)的二维混合金属-金属有机框架 (MM-MOFs) 用于电催化水分离反应","authors":"Janak, Ritika Jaryal, Sakshi, Rakesh Kumar, Sadhika Khullar","doi":"10.1016/j.cattod.2024.115117","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen and oxygen production from electrocatalytic water splitting offers a sustainable strategy towards achieving renewable energy. However, sluggish kinetics of the reaction require expensive platinum (Pt) and ruthenium dioxide (RuO<sub>2</sub>)/ iridium dioxide (IrO<sub>2</sub>)-based electrocatalysts where the high cost of the catalyst hinders the practical use of water splitting reaction. Two-dimensional mixed metal metal-organic frameworks (2D MM-MOFs) have emerged as alternative promising electrocatalysts. In MM-MOFs, the metal centers play a crucial role in determining the catalytic activity. Among several MM-MOFs explored for water splitting reaction, Co(II) and Ni(II)-based MM-MOFs have shown a significant potential, rendering them as promising materials for efficient and sustainable electrochemical energy conversion and storage technologies. Herein, we highlight recent advancements in the development of Ni(II) and Co(II)-based 2D MM-MOFs, emphasizing their outstanding electrocatalytic performance for hydrogen evolution reaction and oxygen evolution reaction. Strategies for the effective design and development of electrocatalysts along with the challenges are also discussed.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115117"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel (II) and Cobalt (II) Based 2D mixed metal-metal organic frameworks (MM-MOFs) for electrocatalytic water splitting reactions\",\"authors\":\"Janak, Ritika Jaryal, Sakshi, Rakesh Kumar, Sadhika Khullar\",\"doi\":\"10.1016/j.cattod.2024.115117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen and oxygen production from electrocatalytic water splitting offers a sustainable strategy towards achieving renewable energy. However, sluggish kinetics of the reaction require expensive platinum (Pt) and ruthenium dioxide (RuO<sub>2</sub>)/ iridium dioxide (IrO<sub>2</sub>)-based electrocatalysts where the high cost of the catalyst hinders the practical use of water splitting reaction. Two-dimensional mixed metal metal-organic frameworks (2D MM-MOFs) have emerged as alternative promising electrocatalysts. In MM-MOFs, the metal centers play a crucial role in determining the catalytic activity. Among several MM-MOFs explored for water splitting reaction, Co(II) and Ni(II)-based MM-MOFs have shown a significant potential, rendering them as promising materials for efficient and sustainable electrochemical energy conversion and storage technologies. Herein, we highlight recent advancements in the development of Ni(II) and Co(II)-based 2D MM-MOFs, emphasizing their outstanding electrocatalytic performance for hydrogen evolution reaction and oxygen evolution reaction. Strategies for the effective design and development of electrocatalysts along with the challenges are also discussed.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"446 \",\"pages\":\"Article 115117\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124006114\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124006114","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Nickel (II) and Cobalt (II) Based 2D mixed metal-metal organic frameworks (MM-MOFs) for electrocatalytic water splitting reactions
Hydrogen and oxygen production from electrocatalytic water splitting offers a sustainable strategy towards achieving renewable energy. However, sluggish kinetics of the reaction require expensive platinum (Pt) and ruthenium dioxide (RuO2)/ iridium dioxide (IrO2)-based electrocatalysts where the high cost of the catalyst hinders the practical use of water splitting reaction. Two-dimensional mixed metal metal-organic frameworks (2D MM-MOFs) have emerged as alternative promising electrocatalysts. In MM-MOFs, the metal centers play a crucial role in determining the catalytic activity. Among several MM-MOFs explored for water splitting reaction, Co(II) and Ni(II)-based MM-MOFs have shown a significant potential, rendering them as promising materials for efficient and sustainable electrochemical energy conversion and storage technologies. Herein, we highlight recent advancements in the development of Ni(II) and Co(II)-based 2D MM-MOFs, emphasizing their outstanding electrocatalytic performance for hydrogen evolution reaction and oxygen evolution reaction. Strategies for the effective design and development of electrocatalysts along with the challenges are also discussed.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.