用于电缆驱动并联机器人电缆故障检测和识别的无传感器方法

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-11-09 DOI:10.1016/j.robot.2024.104855
Giovanni Boschetti , Riccardo Minto
{"title":"用于电缆驱动并联机器人电缆故障检测和识别的无传感器方法","authors":"Giovanni Boschetti ,&nbsp;Riccardo Minto","doi":"10.1016/j.robot.2024.104855","DOIUrl":null,"url":null,"abstract":"<div><div>Cable-driven parallel robots (CDPRs) are a particular class of parallel robots that provide several advantages that may well be received in the industrial field. However, the risk of damage due to cable failure is not negligible, thus procedures that move the end-effector to a safe pose after failure are required. This work aims to provide a sensorless failure detection and identification strategy to properly recognize the cable failure event without adding additional devices. This approach is paired with an end-effector recovery strategy to move the end-effector towards a safe position, thus providing for a complete cable failure recovery strategy, which detects the failure event and controls the end-effector accordingly. The proposed strategy is tested on a cable-driven suspended parallel robot prototype composed of industrial-grade components. The experimental results show the feasibility of the proposed approach.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"183 ","pages":"Article 104855"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sensorless approach for cable failure detection and identification in cable-driven parallel robots\",\"authors\":\"Giovanni Boschetti ,&nbsp;Riccardo Minto\",\"doi\":\"10.1016/j.robot.2024.104855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cable-driven parallel robots (CDPRs) are a particular class of parallel robots that provide several advantages that may well be received in the industrial field. However, the risk of damage due to cable failure is not negligible, thus procedures that move the end-effector to a safe pose after failure are required. This work aims to provide a sensorless failure detection and identification strategy to properly recognize the cable failure event without adding additional devices. This approach is paired with an end-effector recovery strategy to move the end-effector towards a safe position, thus providing for a complete cable failure recovery strategy, which detects the failure event and controls the end-effector accordingly. The proposed strategy is tested on a cable-driven suspended parallel robot prototype composed of industrial-grade components. The experimental results show the feasibility of the proposed approach.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"183 \",\"pages\":\"Article 104855\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024002392\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002392","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

电缆驱动并联机器人(CDPRs)是一类特殊的并联机器人,具有多种优势,在工业领域很受欢迎。然而,电缆故障造成损坏的风险不容忽视,因此需要在故障发生后将末端执行器移动到安全位置。这项工作旨在提供一种无传感器故障检测和识别策略,在不增加额外设备的情况下正确识别电缆故障事件。该方法与末端执行器恢复策略相配合,可将末端执行器移至安全位置,从而提供完整的电缆故障恢复策略,该策略可检测故障事件并相应地控制末端执行器。我们在一个由工业级组件组成的缆索驱动悬挂并联机器人原型上测试了所提出的策略。实验结果表明了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A sensorless approach for cable failure detection and identification in cable-driven parallel robots
Cable-driven parallel robots (CDPRs) are a particular class of parallel robots that provide several advantages that may well be received in the industrial field. However, the risk of damage due to cable failure is not negligible, thus procedures that move the end-effector to a safe pose after failure are required. This work aims to provide a sensorless failure detection and identification strategy to properly recognize the cable failure event without adding additional devices. This approach is paired with an end-effector recovery strategy to move the end-effector towards a safe position, thus providing for a complete cable failure recovery strategy, which detects the failure event and controls the end-effector accordingly. The proposed strategy is tested on a cable-driven suspended parallel robot prototype composed of industrial-grade components. The experimental results show the feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
Editorial Board A sensorless approach for cable failure detection and identification in cable-driven parallel robots Learning latent causal factors from the intricate sensor feedback of contact-rich robotic assembly tasks GPS-free autonomous navigation in cluttered tree rows with deep semantic segmentation Robust trajectory tracking for omnidirectional robots by means of anti-peaking linear active disturbance rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1