Mennatallah H. Farag, S.A. El-Hakam, Awad I. Ahmed, Amr Awad Ibrahim, Doaa A. Kospa
{"title":"利用氧化铜-聚苯胺卵壳结构提高太阳能-蒸汽转换效率","authors":"Mennatallah H. Farag, S.A. El-Hakam, Awad I. Ahmed, Amr Awad Ibrahim, Doaa A. Kospa","doi":"10.1016/j.desal.2024.118296","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, the low-cost copper oxide was encapsulated in the polyaniline (PANI) structure forming a yolk-shell (YS) platform which can provide a large surface area and sufficient active sites and enhance light scattering in its hollow space or voids, both of which can significantly improve the near-full usage of solar energy. The fabrication of the YS structure was assisted with a soft template (hexadecyltrimethylammonium bromide, CTAB) which the removed by the acidic etching process producing uniform voids through the composite structure. Moreover, the etching process using an acidic medium resulted in the formation of the PANI emeraldine salt which is beneficial for the salt-resistant properties of the composite. The encapsulated CuO@void@Es-PANI showed an outstanding rate of water evaporation of 1.91 kg m<sup>−2</sup> h<sup>−1</sup> and a corresponding high Solar-to-Steam conversion efficiency of 98.9 % under the irradiation of 1 sun compared to that of the normal mixed CuO/PANI (1.53 kg m<sup>−2</sup> h<sup>−1</sup> and 81.3 %). Meanwhile, the same high evaporation flux was approximately obtained after a continuous 72 h even in high saline water or contaminated seawater.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118296"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced solar-to-steam conversion efficiency using CuO-polyaniline yolk-shell structures\",\"authors\":\"Mennatallah H. Farag, S.A. El-Hakam, Awad I. Ahmed, Amr Awad Ibrahim, Doaa A. Kospa\",\"doi\":\"10.1016/j.desal.2024.118296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, the low-cost copper oxide was encapsulated in the polyaniline (PANI) structure forming a yolk-shell (YS) platform which can provide a large surface area and sufficient active sites and enhance light scattering in its hollow space or voids, both of which can significantly improve the near-full usage of solar energy. The fabrication of the YS structure was assisted with a soft template (hexadecyltrimethylammonium bromide, CTAB) which the removed by the acidic etching process producing uniform voids through the composite structure. Moreover, the etching process using an acidic medium resulted in the formation of the PANI emeraldine salt which is beneficial for the salt-resistant properties of the composite. The encapsulated CuO@void@Es-PANI showed an outstanding rate of water evaporation of 1.91 kg m<sup>−2</sup> h<sup>−1</sup> and a corresponding high Solar-to-Steam conversion efficiency of 98.9 % under the irradiation of 1 sun compared to that of the normal mixed CuO/PANI (1.53 kg m<sup>−2</sup> h<sup>−1</sup> and 81.3 %). Meanwhile, the same high evaporation flux was approximately obtained after a continuous 72 h even in high saline water or contaminated seawater.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"594 \",\"pages\":\"Article 118296\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424010075\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424010075","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
在这里,低成本的氧化铜被封装在聚苯胺(PANI)结构中,形成一个蛋黄壳(YS)平台,该平台可提供较大的表面积和足够的活性位点,并可增强中空空间或空隙中的光散射,这两者都能显著提高太阳能的近乎完全利用率。在制作 YS 结构时使用了软模板(十六烷基三甲基溴化铵,CTAB),通过酸性蚀刻工艺将其去除,从而在复合结构中形成均匀的空隙。此外,使用酸性介质的蚀刻过程会形成 PANI 绿宝石盐,这有利于提高复合材料的抗盐性能。与普通混合 CuO/PANI 相比(1.53 kg m-2 h-1 和 81.3%),封装的 CuO@void@Es-PANI 在 1 个太阳光照射下的水分蒸发率高达 1.91 kg m-2 h-1,相应的太阳能-蒸汽转换效率高达 98.9%。同时,即使在高盐度水或受污染的海水中,连续 72 小时后也能获得大致相同的高蒸发通量。
Enhanced solar-to-steam conversion efficiency using CuO-polyaniline yolk-shell structures
Herein, the low-cost copper oxide was encapsulated in the polyaniline (PANI) structure forming a yolk-shell (YS) platform which can provide a large surface area and sufficient active sites and enhance light scattering in its hollow space or voids, both of which can significantly improve the near-full usage of solar energy. The fabrication of the YS structure was assisted with a soft template (hexadecyltrimethylammonium bromide, CTAB) which the removed by the acidic etching process producing uniform voids through the composite structure. Moreover, the etching process using an acidic medium resulted in the formation of the PANI emeraldine salt which is beneficial for the salt-resistant properties of the composite. The encapsulated CuO@void@Es-PANI showed an outstanding rate of water evaporation of 1.91 kg m−2 h−1 and a corresponding high Solar-to-Steam conversion efficiency of 98.9 % under the irradiation of 1 sun compared to that of the normal mixed CuO/PANI (1.53 kg m−2 h−1 and 81.3 %). Meanwhile, the same high evaporation flux was approximately obtained after a continuous 72 h even in high saline water or contaminated seawater.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.