阶梯电渗析:锂离子的高效浓缩及其背后的机制

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Desalination Pub Date : 2024-11-02 DOI:10.1016/j.desal.2024.118270
Cong Liu , Siyang Gu , Wenjing Gao , Ming Tan , Yong Lin , Min Hu , Yuebiao Li , Yang Zhang
{"title":"阶梯电渗析:锂离子的高效浓缩及其背后的机制","authors":"Cong Liu ,&nbsp;Siyang Gu ,&nbsp;Wenjing Gao ,&nbsp;Ming Tan ,&nbsp;Yong Lin ,&nbsp;Min Hu ,&nbsp;Yuebiao Li ,&nbsp;Yang Zhang","doi":"10.1016/j.desal.2024.118270","DOIUrl":null,"url":null,"abstract":"<div><div>The development of lithium extraction technology from salt lakes has seen significant demand in recent years, driven by the surge in energy storage needs for lithium-ion batteries used in electric vehicles and renewable power plants. Currently, evaporation technologies such as Mechanical Vapor Recompression (MVR) and Multi-Effect Distillation (MED) are commonly employed to concentrate lithium chloride for subsequent lithium carbonate precipitation. However, these evaporation methods limit lithium yield and increase capital and operational costs, particularly in high latitude areas. Pressure-driven membrane processes like reverse osmosis are hindered by concentration polarization and cannot significantly increase lithium chloride concentration. This study proposes a new membrane stack configuration with a laddered compartment design, termed Ladder Electrodialysis (LED), which addresses the concentration polarization issue and achieves a lithium salt (LiCl) concentration of 16.39 % (196 g·L<sup>−1</sup>). Economic analysis shows that the energy consumption is only 0.42 kWh per kilogram of LiCl. Ladder electrodialysis is a novel salt concentration technology, with applications in brine valorization or disposal.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118270"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ladder electrodialysis: Efficient up-concentration of lithium ion and its mechanisms behind\",\"authors\":\"Cong Liu ,&nbsp;Siyang Gu ,&nbsp;Wenjing Gao ,&nbsp;Ming Tan ,&nbsp;Yong Lin ,&nbsp;Min Hu ,&nbsp;Yuebiao Li ,&nbsp;Yang Zhang\",\"doi\":\"10.1016/j.desal.2024.118270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of lithium extraction technology from salt lakes has seen significant demand in recent years, driven by the surge in energy storage needs for lithium-ion batteries used in electric vehicles and renewable power plants. Currently, evaporation technologies such as Mechanical Vapor Recompression (MVR) and Multi-Effect Distillation (MED) are commonly employed to concentrate lithium chloride for subsequent lithium carbonate precipitation. However, these evaporation methods limit lithium yield and increase capital and operational costs, particularly in high latitude areas. Pressure-driven membrane processes like reverse osmosis are hindered by concentration polarization and cannot significantly increase lithium chloride concentration. This study proposes a new membrane stack configuration with a laddered compartment design, termed Ladder Electrodialysis (LED), which addresses the concentration polarization issue and achieves a lithium salt (LiCl) concentration of 16.39 % (196 g·L<sup>−1</sup>). Economic analysis shows that the energy consumption is only 0.42 kWh per kilogram of LiCl. Ladder electrodialysis is a novel salt concentration technology, with applications in brine valorization or disposal.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"594 \",\"pages\":\"Article 118270\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009810\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009810","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于电动汽车和可再生能源发电厂使用的锂离子电池储能需求激增,对盐湖提锂技术的开发需求巨大。目前,通常采用机械蒸汽再压缩(MVR)和多效蒸馏(MED)等蒸发技术来浓缩氯化锂,以便随后沉淀碳酸锂。然而,这些蒸发方法限制了锂的产量,增加了资本和运营成本,尤其是在高纬度地区。反渗透等压力驱动的膜过程受到浓缩极化的阻碍,无法显著提高氯化锂的浓度。本研究提出了一种新的膜堆配置,采用阶梯式隔室设计,称为阶梯电渗析(LED),可解决浓度极化问题,使锂盐(氯化锂)浓度达到 16.39 %(196 g-L-1)。经济分析表明,每公斤锂盐的能耗仅为 0.42 千瓦时。阶梯电渗析是一种新颖的盐浓缩技术,可应用于盐水提纯或处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ladder electrodialysis: Efficient up-concentration of lithium ion and its mechanisms behind
The development of lithium extraction technology from salt lakes has seen significant demand in recent years, driven by the surge in energy storage needs for lithium-ion batteries used in electric vehicles and renewable power plants. Currently, evaporation technologies such as Mechanical Vapor Recompression (MVR) and Multi-Effect Distillation (MED) are commonly employed to concentrate lithium chloride for subsequent lithium carbonate precipitation. However, these evaporation methods limit lithium yield and increase capital and operational costs, particularly in high latitude areas. Pressure-driven membrane processes like reverse osmosis are hindered by concentration polarization and cannot significantly increase lithium chloride concentration. This study proposes a new membrane stack configuration with a laddered compartment design, termed Ladder Electrodialysis (LED), which addresses the concentration polarization issue and achieves a lithium salt (LiCl) concentration of 16.39 % (196 g·L−1). Economic analysis shows that the energy consumption is only 0.42 kWh per kilogram of LiCl. Ladder electrodialysis is a novel salt concentration technology, with applications in brine valorization or disposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
期刊最新文献
Preparation of fully coated PEDOT: PSS film on MXene for high reliability capacitive deionization Echelon extraction of valuable components from salt lake brine substrate Efficient removal of uranium and sulfate in acid contaminated groundwater by flow electrode capacitive deionization Assessment of a pilot continuous freezing desalination system with vacuum-assisted brine extraction Reverse osmosis process combining energy consumption analysis and mass transfer in the concentration of lithium-enriched brine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1