{"title":"碲化铋作为掺钕光纤激光器的无源 Q 开关","authors":"A.H.A. Rosol , A.A.A. Jafry , N.F. Zulkipli , F.S.M. Samsamnun , S.W. Harun , A. Hamzah","doi":"10.1016/j.yofte.2024.104042","DOIUrl":null,"url":null,"abstract":"<div><div>The scene of fiber laser has progressed very rapidly with the demonstration of various materials as saturable absorbers in a near- and mid-infrared laser cavity. However, the researchers focused on erbium-, ytterbium-, and thulium-doped fiber as a gain medium. Here, we proposed a neodymium-doped fiber laser setup to generate a Q-switched laser in a 1-μm regime. The laser utilized bismuth telluride, a topological insulator as a Q-switcher for pulse generation. With a linear absorption of approximately 5 dB at 1089 nm, this SA can generate a stable Q-switched laser in a neodymium-doped fiber laser cavity. It generates a stable Q-switched laser at 1089 nm when the pump intensity is adjusted between 167 and 190 mW. The pulsed laser owns the shortest pulse width of 6.48 μs with a maximum repetition rate of 40 kHz. The stability of the laser is promising since it has a signal-to-noise ratio of 40 dB. In the authors’ knowledge, this is the first demonstration of bismuth telluride as a saturable absorber in an all-fiberized neodymium-doped fiber laser cavity.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 104042"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth telluride as a passive Q-switcher for neodymium-doped fiber laser\",\"authors\":\"A.H.A. Rosol , A.A.A. Jafry , N.F. Zulkipli , F.S.M. Samsamnun , S.W. Harun , A. Hamzah\",\"doi\":\"10.1016/j.yofte.2024.104042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The scene of fiber laser has progressed very rapidly with the demonstration of various materials as saturable absorbers in a near- and mid-infrared laser cavity. However, the researchers focused on erbium-, ytterbium-, and thulium-doped fiber as a gain medium. Here, we proposed a neodymium-doped fiber laser setup to generate a Q-switched laser in a 1-μm regime. The laser utilized bismuth telluride, a topological insulator as a Q-switcher for pulse generation. With a linear absorption of approximately 5 dB at 1089 nm, this SA can generate a stable Q-switched laser in a neodymium-doped fiber laser cavity. It generates a stable Q-switched laser at 1089 nm when the pump intensity is adjusted between 167 and 190 mW. The pulsed laser owns the shortest pulse width of 6.48 μs with a maximum repetition rate of 40 kHz. The stability of the laser is promising since it has a signal-to-noise ratio of 40 dB. In the authors’ knowledge, this is the first demonstration of bismuth telluride as a saturable absorber in an all-fiberized neodymium-doped fiber laser cavity.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"88 \",\"pages\":\"Article 104042\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024003870\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003870","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bismuth telluride as a passive Q-switcher for neodymium-doped fiber laser
The scene of fiber laser has progressed very rapidly with the demonstration of various materials as saturable absorbers in a near- and mid-infrared laser cavity. However, the researchers focused on erbium-, ytterbium-, and thulium-doped fiber as a gain medium. Here, we proposed a neodymium-doped fiber laser setup to generate a Q-switched laser in a 1-μm regime. The laser utilized bismuth telluride, a topological insulator as a Q-switcher for pulse generation. With a linear absorption of approximately 5 dB at 1089 nm, this SA can generate a stable Q-switched laser in a neodymium-doped fiber laser cavity. It generates a stable Q-switched laser at 1089 nm when the pump intensity is adjusted between 167 and 190 mW. The pulsed laser owns the shortest pulse width of 6.48 μs with a maximum repetition rate of 40 kHz. The stability of the laser is promising since it has a signal-to-noise ratio of 40 dB. In the authors’ knowledge, this is the first demonstration of bismuth telluride as a saturable absorber in an all-fiberized neodymium-doped fiber laser cavity.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.