{"title":"MABDT:用于遥感图像去毛刺的多尺度注意力增强可变形变换器","authors":"Jin Ning, Jie Yin, Fei Deng, Lianbin Xie","doi":"10.1016/j.sigpro.2024.109768","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the heterogeneous spatial distribution and non-uniform morphological characteristics of haze in remote sensing images (RSIs), conventional dehazing algorithms struggle to precisely recover the fine-grained details of terrestrial objects. To address this issue, a novel multi-scale attention boosted deformable Transformer (MABDT) tailored for RSI dehazing is proposed. This framework synergizes the multi-receptive field features elicited by convolutional neural network (CNN) with the long-term dependency features derived from Transformer, which facilitates a more adept restitution of texture and intricate detail information within RSIs. Firstly, spatial attention deformable convolution is introduced for computation of multi-head self-attention in the Transformer block, particularly in addressing complex haze scenarios encountered in RSIs. Subsequently, a multi-scale attention feature enhancement (MAFE) block is designed, tailored to capture local and multi-level detailed information features using multi-receptive field convolution operations, thereby accommodating non-uniform haze. Finally, a multi-level feature complementary fusion (MFCF) block is proposed, leveraging both shallow and deep features acquired from all encoding layers to augment each level of reconstructed image. The dehazing performance is evaluated on 6 open-source datasets, and quantitative and qualitative experimental results demonstrate the advancements of the proposed method in both metrical scores and visual quality. The source code is available at <span><span>https://github.com/ningjin00/MABDT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"229 ","pages":"Article 109768"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing\",\"authors\":\"Jin Ning, Jie Yin, Fei Deng, Lianbin Xie\",\"doi\":\"10.1016/j.sigpro.2024.109768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Owing to the heterogeneous spatial distribution and non-uniform morphological characteristics of haze in remote sensing images (RSIs), conventional dehazing algorithms struggle to precisely recover the fine-grained details of terrestrial objects. To address this issue, a novel multi-scale attention boosted deformable Transformer (MABDT) tailored for RSI dehazing is proposed. This framework synergizes the multi-receptive field features elicited by convolutional neural network (CNN) with the long-term dependency features derived from Transformer, which facilitates a more adept restitution of texture and intricate detail information within RSIs. Firstly, spatial attention deformable convolution is introduced for computation of multi-head self-attention in the Transformer block, particularly in addressing complex haze scenarios encountered in RSIs. Subsequently, a multi-scale attention feature enhancement (MAFE) block is designed, tailored to capture local and multi-level detailed information features using multi-receptive field convolution operations, thereby accommodating non-uniform haze. Finally, a multi-level feature complementary fusion (MFCF) block is proposed, leveraging both shallow and deep features acquired from all encoding layers to augment each level of reconstructed image. The dehazing performance is evaluated on 6 open-source datasets, and quantitative and qualitative experimental results demonstrate the advancements of the proposed method in both metrical scores and visual quality. The source code is available at <span><span>https://github.com/ningjin00/MABDT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"229 \",\"pages\":\"Article 109768\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003888\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003888","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Owing to the heterogeneous spatial distribution and non-uniform morphological characteristics of haze in remote sensing images (RSIs), conventional dehazing algorithms struggle to precisely recover the fine-grained details of terrestrial objects. To address this issue, a novel multi-scale attention boosted deformable Transformer (MABDT) tailored for RSI dehazing is proposed. This framework synergizes the multi-receptive field features elicited by convolutional neural network (CNN) with the long-term dependency features derived from Transformer, which facilitates a more adept restitution of texture and intricate detail information within RSIs. Firstly, spatial attention deformable convolution is introduced for computation of multi-head self-attention in the Transformer block, particularly in addressing complex haze scenarios encountered in RSIs. Subsequently, a multi-scale attention feature enhancement (MAFE) block is designed, tailored to capture local and multi-level detailed information features using multi-receptive field convolution operations, thereby accommodating non-uniform haze. Finally, a multi-level feature complementary fusion (MFCF) block is proposed, leveraging both shallow and deep features acquired from all encoding layers to augment each level of reconstructed image. The dehazing performance is evaluated on 6 open-source datasets, and quantitative and qualitative experimental results demonstrate the advancements of the proposed method in both metrical scores and visual quality. The source code is available at https://github.com/ningjin00/MABDT.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.