抑制微地震数据混合噪声的新经验小曲线去噪策略

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-11-07 DOI:10.1016/j.cageo.2024.105751
Liyuan Feng , Binhong Li , Huailiang Li , Jian He
{"title":"抑制微地震数据混合噪声的新经验小曲线去噪策略","authors":"Liyuan Feng ,&nbsp;Binhong Li ,&nbsp;Huailiang Li ,&nbsp;Jian He","doi":"10.1016/j.cageo.2024.105751","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel denoising strategy based on empirical curvelet transform (ECT) for noisy microseismic data. Our approach can simultaneously suppress high-frequency, low-frequency, and shared-bandwidth noises and preserve detailed information on the noisy microseismic data. Initially, we design a new threshold estimation method by adding a scale factor for ECT threshold denoising. Subsequently, we construct an adaptive parameter model employing the similarity standard deviation for the non-local means (NLM) algorithm. Then, we divide the coefficients obtained from the ECT decomposition into two sets based on the energy spectrum, subjecting each set to improved adaptive thresholding and improved NLM denoising algorithms. Eventually, we reconstruct the denoised signals using the empirical curvelet inverse transform. Our results demonstrate that under a signal-to-noise ratio (SNR) of <span><math><mo>−</mo></math></span>10 dB, the proposed strategy achieves a correlation coefficient of 0.9524, a root mean square error of 0.198, an SNR of 1.36 dB, and reduces the first arrival picking error to 0.00382 s. Furthermore, application on the real microseismic data further confirms that the proposed method can clarify the corresponding first arrival.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"194 ","pages":"Article 105751"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data\",\"authors\":\"Liyuan Feng ,&nbsp;Binhong Li ,&nbsp;Huailiang Li ,&nbsp;Jian He\",\"doi\":\"10.1016/j.cageo.2024.105751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a novel denoising strategy based on empirical curvelet transform (ECT) for noisy microseismic data. Our approach can simultaneously suppress high-frequency, low-frequency, and shared-bandwidth noises and preserve detailed information on the noisy microseismic data. Initially, we design a new threshold estimation method by adding a scale factor for ECT threshold denoising. Subsequently, we construct an adaptive parameter model employing the similarity standard deviation for the non-local means (NLM) algorithm. Then, we divide the coefficients obtained from the ECT decomposition into two sets based on the energy spectrum, subjecting each set to improved adaptive thresholding and improved NLM denoising algorithms. Eventually, we reconstruct the denoised signals using the empirical curvelet inverse transform. Our results demonstrate that under a signal-to-noise ratio (SNR) of <span><math><mo>−</mo></math></span>10 dB, the proposed strategy achieves a correlation coefficient of 0.9524, a root mean square error of 0.198, an SNR of 1.36 dB, and reduces the first arrival picking error to 0.00382 s. Furthermore, application on the real microseismic data further confirms that the proposed method can clarify the corresponding first arrival.</div></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"194 \",\"pages\":\"Article 105751\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424002346\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002346","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们针对高噪声微地震数据提出了一种基于经验小曲线变换(ECT)的新型去噪策略。我们的方法可以同时抑制高频、低频和共享带宽噪声,并保留噪声微地震数据的详细信息。首先,我们设计了一种新的阈值估计方法,为 ECT 阈值去噪添加了一个比例因子。随后,我们利用非局部均值(NLM)算法的相似性标准偏差构建了一个自适应参数模型。然后,我们根据能谱将 ECT 分解得到的系数分成两组,每组都采用改进的自适应阈值和改进的 NLM 去噪算法。最后,我们使用经验小曲线逆变换重建去噪信号。结果表明,在信噪比(SNR)为 -10 dB 的条件下,所提出的策略实现了 0.9524 的相关系数、0.198 的均方根误差、1.36 dB 的信噪比,并将首次到达的选取误差降低到 0.00382 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data
We present a novel denoising strategy based on empirical curvelet transform (ECT) for noisy microseismic data. Our approach can simultaneously suppress high-frequency, low-frequency, and shared-bandwidth noises and preserve detailed information on the noisy microseismic data. Initially, we design a new threshold estimation method by adding a scale factor for ECT threshold denoising. Subsequently, we construct an adaptive parameter model employing the similarity standard deviation for the non-local means (NLM) algorithm. Then, we divide the coefficients obtained from the ECT decomposition into two sets based on the energy spectrum, subjecting each set to improved adaptive thresholding and improved NLM denoising algorithms. Eventually, we reconstruct the denoised signals using the empirical curvelet inverse transform. Our results demonstrate that under a signal-to-noise ratio (SNR) of 10 dB, the proposed strategy achieves a correlation coefficient of 0.9524, a root mean square error of 0.198, an SNR of 1.36 dB, and reduces the first arrival picking error to 0.00382 s. Furthermore, application on the real microseismic data further confirms that the proposed method can clarify the corresponding first arrival.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1